Recursive Neural Network for Video Deblurring
Video deblurring is still a challenging low-level vision task since spatio-temporal characteristics across both the spatial and temporal domains are difficult to model. In this article, to model the temporal information, we develop a non-local block which estimates inter-frame similarity and inter-f...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 31; no. 8; pp. 3025 - 3036 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Video deblurring is still a challenging low-level vision task since spatio-temporal characteristics across both the spatial and temporal domains are difficult to model. In this article, to model the temporal information, we develop a non-local block which estimates inter-frame similarity and inter-frame difference. Specially, for modeling the spatial characteristics and restoring sharp frame details, we propose a recursive block that iteratively refines feature maps generated at the last iteration. In addition, a novel temporal loss function is introduced to ensure the temporal consistency of generated frames. Experimental results on public datasets demonstrate that our method achieves state-of-the-art performance both quantitatively and qualitatively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2020.3035722 |