Recursive Neural Network for Video Deblurring

Video deblurring is still a challenging low-level vision task since spatio-temporal characteristics across both the spatial and temporal domains are difficult to model. In this article, to model the temporal information, we develop a non-local block which estimates inter-frame similarity and inter-f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 8; pp. 3025 - 3036
Main Authors Zhang, Xiaoqin, Jiang, Runhua, Wang, Tao, Wang, Jinxin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Video deblurring is still a challenging low-level vision task since spatio-temporal characteristics across both the spatial and temporal domains are difficult to model. In this article, to model the temporal information, we develop a non-local block which estimates inter-frame similarity and inter-frame difference. Specially, for modeling the spatial characteristics and restoring sharp frame details, we propose a recursive block that iteratively refines feature maps generated at the last iteration. In addition, a novel temporal loss function is introduced to ensure the temporal consistency of generated frames. Experimental results on public datasets demonstrate that our method achieves state-of-the-art performance both quantitatively and qualitatively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2020.3035722