A Unified Parametric Representation for Robotic Compliant Skills With Adaptation of Impedance and Force
Robotic compliant manipulation is a very challenging but urgent research spot in the domain of robotics. One difficulty lies in the lack of a unified representation for encoding and learning of compliant profiles. This article aims to introduce a novel learning and control framework to address this...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 27; no. 2; pp. 623 - 633 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Robotic compliant manipulation is a very challenging but urgent research spot in the domain of robotics. One difficulty lies in the lack of a unified representation for encoding and learning of compliant profiles. This article aims to introduce a novel learning and control framework to address this problem: 1) we provide a parametric representation that enables a compliant skill to be encoded in a parametric space and allows a robot to learn compliant manipulation skills based on motion and force information collected from human demonstrations; and 2) the updating laws of the compliant profiles, including impedance and force profiles, are derived from a biomimetic control strategy based on the human motor learning principles. Our approach enables the simultaneous adaptation of impedance and feedforward force online during robot's reproduction of the demonstrated tasks to deal with task dynamics and external interferences. The proposed approach is verified based on both simulation and real-world task scenarios. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2021.3109160 |