Fusion of shallow and deep features from 18F-FDG PET/CT for predicting EGFR-sensitizing mutations in non-small cell lung cancer
Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor-sensitizing (EGFR-sensitizing) mutations exhibit a positive response to tyrosine kinase inhibitors (TKIs). Given the limitations of current clinical predictive methods, it is critical to explore radiomics-based approac...
Saved in:
Published in | Quantitative imaging in medicine and surgery Vol. 14; no. 8; pp. 5460 - 5472 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
AME Publishing Company
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor-sensitizing (EGFR-sensitizing) mutations exhibit a positive response to tyrosine kinase inhibitors (TKIs). Given the limitations of current clinical predictive methods, it is critical to explore radiomics-based approaches. In this study, we leveraged deep-learning technology with multimodal radiomics data to more accurately predict EGFR-sensitizing mutations.BackgroundNon-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor-sensitizing (EGFR-sensitizing) mutations exhibit a positive response to tyrosine kinase inhibitors (TKIs). Given the limitations of current clinical predictive methods, it is critical to explore radiomics-based approaches. In this study, we leveraged deep-learning technology with multimodal radiomics data to more accurately predict EGFR-sensitizing mutations.A total of 202 patients who underwent both flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans and EGFR sequencing prior to treatment were included in this study. Deep and shallow features were extracted by a residual neural network and the Python package PyRadiomics, respectively. We used least absolute shrinkage and selection operator (LASSO) regression to select predictive features and applied a support vector machine (SVM) to classify the EGFR-sensitive patients. Moreover, we compared predictive performance across different deep models and imaging modalities.MethodsA total of 202 patients who underwent both flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans and EGFR sequencing prior to treatment were included in this study. Deep and shallow features were extracted by a residual neural network and the Python package PyRadiomics, respectively. We used least absolute shrinkage and selection operator (LASSO) regression to select predictive features and applied a support vector machine (SVM) to classify the EGFR-sensitive patients. Moreover, we compared predictive performance across different deep models and imaging modalities.In the classification of EGFR-sensitive mutations, the areas under the curve (AUCs) of ResNet-based deep-shallow features and only shallow features from different multidata were as follows: RES_TRAD, PET/CT vs. CT-only vs. PET-only: 0.94 vs. 0.89 vs. 0.92; and ONLY_TRAD, PET/CT vs. CT-only vs. PET-only: 0.68 vs. 0.50 vs. 0.38. Additionally, the receiver operating characteristic (ROC) curves of the model using both deep and shallow features were significantly different from those of the model built using only shallow features (P<0.05).ResultsIn the classification of EGFR-sensitive mutations, the areas under the curve (AUCs) of ResNet-based deep-shallow features and only shallow features from different multidata were as follows: RES_TRAD, PET/CT vs. CT-only vs. PET-only: 0.94 vs. 0.89 vs. 0.92; and ONLY_TRAD, PET/CT vs. CT-only vs. PET-only: 0.68 vs. 0.50 vs. 0.38. Additionally, the receiver operating characteristic (ROC) curves of the model using both deep and shallow features were significantly different from those of the model built using only shallow features (P<0.05).Our findings suggest that deep features significantly enhance the detection of EGFR-sensitizing mutations, especially those extracted with ResNet. Moreover, PET/CT images are more effective than CT-only and PET-only images in producing EGFR-sensitizing mutation-related signatures.ConclusionsOur findings suggest that deep features significantly enhance the detection of EGFR-sensitizing mutations, especially those extracted with ResNet. Moreover, PET/CT images are more effective than CT-only and PET-only images in producing EGFR-sensitizing mutation-related signatures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. Contributions: (I) Conception and design: X Yao, Y Zhu, Z Huang, Z Hu; (II) Administrative support: L Chen, R Wu, Z Hu; (III) Provision of study materials or patients: Y Wang, L Chen, Z Hu; (IV) Collection and assembly of data: Y Zhu, Z Huang, S Cong; (V) Data analysis and interpretation: X Yao, Z Huang, L Wan; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. |
ISSN: | 2223-4292 2223-4306 |
DOI: | 10.21037/qims-23-1028 |