Multi-Temporal Ultra Dense Memory Network for Video Super-Resolution

Video super-resolution (SR) aims to reconstruct the corresponding high-resolution (HR) frames from consecutive low-resolution (LR) frames. It is crucial for video SR to harness both inter-frame temporal correlations and intra-frame spatial correlations among frames. Previous video SR methods based o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 30; no. 8; pp. 2503 - 2516
Main Authors Yi, Peng, Wang, Zhongyuan, Jiang, Kui, Shao, Zhenfeng, Ma, Jiayi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Video super-resolution (SR) aims to reconstruct the corresponding high-resolution (HR) frames from consecutive low-resolution (LR) frames. It is crucial for video SR to harness both inter-frame temporal correlations and intra-frame spatial correlations among frames. Previous video SR methods based on convolutional neural network (CNN) mostly adopt a single-channel structure and a single memory module, so they are unable to fully exploit inter-frame temporal correlations specific for video. To this end, this paper proposes a multi-temporal ultra-dense memory (MTUDM) network for video super-resolution. Particularly, we embed convolutional long-short-term memory (ConvLSTM) into ultra-dense residual block (UDRB) to construct an ultra-dense memory block (UDMB) for extracting and retaining spatio-temporal correlations. This design also reduces the layer depth by expanding the width, thus avoiding training difficulties, such as gradient exploding and vanishing under a large model. We further adopt multi-temporal information fusion (MTIF) strategy to merge the extracted temporal feature maps in consecutive frames, improving the accuracy without requiring much extra computational cost. The experimental results on extensive public datasets demonstrate that our method outperforms the state-of-the-art methods by a large margin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2019.2925844