Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3  μ m

In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3–1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. For this purpos...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 112; no. 2
Main Authors Ghosh, K., Naresh, Y., Srichakradhar Reddy, N.
Format Journal Article
LanguageEnglish
Published 15.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3–1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 μm. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 μm and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths.
AbstractList In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3-1.55 mu m by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 mu m. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 mu m and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths.
In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3–1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 μm. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 μm and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths.
Author Naresh, Y.
Srichakradhar Reddy, N.
Ghosh, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Ghosh
  fullname: Ghosh, K.
– sequence: 2
  givenname: Y.
  surname: Naresh
  fullname: Naresh, Y.
– sequence: 3
  givenname: N.
  surname: Srichakradhar Reddy
  fullname: Srichakradhar Reddy, N.
BookMark eNqNkbFuFDEQhi0UJC6BgjdwCcXeeez12S5PEYRIkWhCvfL6ZnOOvPbG9godFS1PwkvwDDwET8IeSYUoqEaj-f5_Rv-ck7OYIhLyGtga2FZsYN0qYVqpnpEVMG0aJSU7IyvGODTaKPOCnJdyzxiAFmZFvt8eMGWs3tlA01T96L_Y6lOkaaDjHKpvgj1iptdxVzZXdlfow2xjnUe6T7XQMvf36CqtiU6p1OYup8_1QOsB87g42hjRBh_v6JAyrdaHlE_dMqfTIdUU5tFHLA6jQ4qjL-W0u8djinsKa_Hr6zf68wcdX5Lngw0FXz3VC_Lp_bvbyw_Nzcer68vdTeO4kbWRfSsRuNR7Y7UFxgUzLWom2r1lkklA1Iq3CGC4FE61vZIG5dYyPfSw1eKCvHn0nXJ6mLHUbrnJYQg2YppLB0qKk0_7H6jggoMAxRd084i6nErJOHTO1z8x17xk0gHrTt_roHv63qJ4-5diyn60-fgP9jdA5J63
CitedBy_id crossref_primary_10_1016_j_jallcom_2014_07_030
crossref_primary_10_1088_2053_1591_ab1fca
crossref_primary_10_1016_j_spmi_2021_106919
crossref_primary_10_1016_j_micrna_2022_207328
crossref_primary_10_1007_s10825_020_01577_4
crossref_primary_10_1007_s10825_019_01353_z
Cites_doi 10.1063/1.2795661
10.1103/PhysRevB.78.045315
10.1016/j.msec.2005.10.034
10.1063/1.3431388
10.1103/PhysRevB.75.075306
10.1016/j.mejo.2008.06.015
10.1016/j.physe.2006.09.010
10.1007/3-540-31915-8
10.1063/1.348919
10.1063/1.2937095
10.1103/PhysRevLett.82.2528
10.1103/PhysRevB.66.075316
10.1103/PhysRevB.67.165303
10.1063/1.2927496
10.1103/PhysRevB.77.155322
10.1063/1.3587167
10.1088/0957-4484/18/1/015401
10.1063/1.1622443
10.1016/j.spmi.2009.06.002
10.1063/1.2898895
10.1117/12.765735
10.1016/j.materresbull.2010.06.023
10.1063/1.121595
10.1016/j.jcrysgro.2009.02.034
10.1016/j.ssc.2011.06.007
10.1109/LPT.2009.2026630
10.1063/1.1805707
10.1007/s00339-003-2455-3
10.1063/1.123459
10.1007/s00339-010-6005-5
10.1063/1.1504162
10.1103/PhysRevB.71.205319
10.12693/APhysPolA.110.111
10.1063/1.2137880
10.1116/1.3435325
10.1109/3.766837
10.1109/68.853491
ContentType Journal Article
DBID AAYXX
CITATION
7QQ
7U5
8FD
H8D
JG9
L7M
DOI 10.1063/1.4739457
DatabaseName CrossRef
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_4739457
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
ZCG
~02
7QQ
7U5
8FD
H8D
JG9
L7M
ID FETCH-LOGICAL-c295t-5b45e1258d9a8a1023094e8034da05051ee8724e119253c74b759e56a08fb1683
ISSN 0021-8979
IngestDate Thu Jul 10 22:00:39 EDT 2025
Fri Jul 11 08:01:09 EDT 2025
Tue Jul 01 03:48:34 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c295t-5b45e1258d9a8a1023094e8034da05051ee8724e119253c74b759e56a08fb1683
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1323213172
PQPubID 23500
ParticipantIDs proquest_miscellaneous_1753505148
proquest_miscellaneous_1323213172
crossref_citationtrail_10_1063_1_4739457
crossref_primary_10_1063_1_4739457
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-15
PublicationDateYYYYMMDD 2012-07-15
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of applied physics
PublicationYear 2012
References (2023080502481616500_c33) 2007; 18
(2023080502481616500_c34) 2006; 26
Caldas (2023080502481616500_c4) 2009
(2023080502481616500_c28) 2008; 78
(2023080502481616500_c1) 1999; 35
(2023080502481616500_c14) 2010; 103
(2023080502481616500_c5) 2004; 85
(2023080502481616500_c36) 2007; 36
(2023080502481616500_c16) 2009; 311
(2023080502481616500_c26) 2010; 45
(2023080502481616500_c18) 2002; 81
(2023080502481616500_c37) 2004; 79
(2023080502481616500_c20) 2006; 99
(2023080502481616500_c29) 1991; 69
(2023080502481616500_c2) 2000; 12
(2023080502481616500_c23a) 2010; 28
(2023080502481616500_c21) 2006; 110
(2023080502481616500_c9) 2008; 92
(2023080502481616500_c12) 2003; 67
(2023080502481616500_c17) 2009; 46
(2023080502481616500_c25) 2005; 71
(2023080502481616500_c3) 2009; 21
(2023080502481616500_c24) 1999; 82
(2023080502481616500_c19) 2010; 107
(2023080502481616500_c35) 2002; 66
(2023080502481616500_c11) 2008; 92
(2023080502481616500_c31) 2007; 102
(2023080502481616500_c10) 2008; 103
(2023080502481616500_c22) 2007; 75
(2023080502481616500_c7) 1999; 74
Cullis (2023080502481616500_c32) 2005
(2023080502481616500_c15) 1998; 72
(2023080502481616500_c8) 2003; 83
(2023080502481616500_c23b) 2008; 77
(2023080502481616500_c27) 2011; 151
(2023080502481616500_c30) 2009; 40
(2023080502481616500_c6) 2011; 109
(2023080502481616500_c13) 2008; 6909
References_xml – volume: 102
  start-page: 083506
  year: 2007
  ident: 2023080502481616500_c31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2795661
– volume: 78
  start-page: 045315
  year: 2008
  ident: 2023080502481616500_c28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.045315
– volume: 26
  start-page: 374
  year: 2006
  ident: 2023080502481616500_c34
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2005.10.034
– volume: 107
  start-page: 123107
  year: 2010
  ident: 2023080502481616500_c19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3431388
– volume: 75
  start-page: 075306
  year: 2007
  ident: 2023080502481616500_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.075306
– volume: 40
  start-page: 465
  year: 2009
  ident: 2023080502481616500_c30
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2008.06.015
– volume: 36
  start-page: 106
  year: 2007
  ident: 2023080502481616500_c36
  publication-title: Physica E
  doi: 10.1016/j.physe.2006.09.010
– start-page: 243
  volume-title: Proceedings on the 14th Conference on Microscopy of Semiconducting Materials, Oxford, United Kingdom, April 11-14, 2005
  year: 2005
  ident: 2023080502481616500_c32
  doi: 10.1007/3-540-31915-8
– volume: 69
  start-page: 827
  year: 1991
  ident: 2023080502481616500_c29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.348919
– volume: 92
  start-page: 213104
  year: 2008
  ident: 2023080502481616500_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2937095
– volume: 82
  start-page: 2528
  year: 1999
  ident: 2023080502481616500_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.2528
– volume: 66
  start-page: 075316
  year: 2002
  ident: 2023080502481616500_c35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.075316
– volume: 67
  start-page: 165303
  year: 2003
  ident: 2023080502481616500_c12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.165303
– volume: 103
  start-page: 103533
  year: 2008
  ident: 2023080502481616500_c10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2927496
– volume: 77
  start-page: 155322
  year: 2008
  ident: 2023080502481616500_c23b
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.155322
– volume: 109
  start-page: 104510
  year: 2011
  ident: 2023080502481616500_c6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3587167
– volume: 18
  start-page: 15401
  year: 2007
  ident: 2023080502481616500_c33
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/1/015401
– volume: 83
  start-page: 3716
  year: 2003
  ident: 2023080502481616500_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1622443
– volume: 46
  start-page: 611
  year: 2009
  ident: 2023080502481616500_c17
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2009.06.002
– volume: 92
  start-page: 111906
  year: 2008
  ident: 2023080502481616500_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2898895
– volume: 6909
  start-page: 690903
  year: 2008
  ident: 2023080502481616500_c13
  publication-title: Proc. SPIE
  doi: 10.1117/12.765735
– volume: 45
  start-page: 1466
  year: 2010
  ident: 2023080502481616500_c26
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2010.06.023
– volume: 72
  start-page: 3335
  year: 1998
  ident: 2023080502481616500_c15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121595
– volume: 311
  start-page: 2281
  year: 2009
  ident: 2023080502481616500_c16
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.02.034
– volume: 151
  start-page: 1394
  year: 2011
  ident: 2023080502481616500_c27
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2011.06.007
– volume: 21
  start-page: 1332
  year: 2009
  ident: 2023080502481616500_c3
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2009.2026630
– volume: 85
  start-page: 3050
  year: 2004
  ident: 2023080502481616500_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1805707
– volume: 79
  start-page: 587
  year: 2004
  ident: 2023080502481616500_c37
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-003-2455-3
– volume: 74
  start-page: 1111
  year: 1999
  ident: 2023080502481616500_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123459
– volume: 103
  start-page: 245
  year: 2010
  ident: 2023080502481616500_c14
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-010-6005-5
– volume: 81
  start-page: 1708
  year: 2002
  ident: 2023080502481616500_c18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1504162
– volume: 71
  start-page: 205319
  year: 2005
  ident: 2023080502481616500_c25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.205319
– volume: 110
  start-page: 111
  year: 2006
  ident: 2023080502481616500_c21
  publication-title: Acta Phys. Pol. A
  doi: 10.12693/APhysPolA.110.111
– volume: 99
  start-page: 023521
  year: 2006
  ident: 2023080502481616500_c20
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2137880
– volume: 28
  start-page: C5E25
  year: 2010
  ident: 2023080502481616500_c23a
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3435325
– volume: 35
  start-page: 936
  year: 1999
  ident: 2023080502481616500_c1
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.766837
– start-page: 527
  volume-title: Proceedings of the 29th International Conference on the Physics of Semiconductors
  year: 2009
  ident: 2023080502481616500_c4
– volume: 12
  start-page: 759
  year: 2000
  ident: 2023080502481616500_c2
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.853491
SSID ssj0011839
Score 2.0737865
Snippet In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs)...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Annealing
Gallium arsenide
Gallium arsenides
Indium arsenides
Multilayers
Quantum dots
Semiconductors
Telecommunications
Wavelengths
Title Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3  μ m
URI https://www.proquest.com/docview/1323213172
https://www.proquest.com/docview/1753505148
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagExI8IBggxi8ZxANSlS5O7NR5rGDdhEpBWiv1LXISZ5FYk6lJX_h7-EO5i500FQUNXqIqdSPH9_Xuu_PdmZD3YAPSVOnQ0WEQOzzj2onHgjtSuF4SsDhkaZPlOw8ulvzzSqx2aWNNdUkdj5IfB-tK_keqcA_kilWy_yDZ7qFwAz6DfOEKEobrbWXcVSGW8N9f26LKZtMcMwWdawWUGpTABMQ1PVeTCqsowcysh-CNVsNqG2McBgnoTVnVzhU45RiXzVFfYxOBAnhkm2uJuaYmXa8pr8rLGjUbps0njXrAk-Mw9jaMTVUMG_kwi-H6D_xXWf5rYisdtT_Pyyrfi7_OsUQq39kK3B7SqTUOw8sNJv5_36g0V5t-DIM1-a6mirOrKWCODM2xMp1eZl4PgN5BfQ8EC0MPIz72Q246Xe_31J5_jabL2SxanK0Wd8mRB86ENyBHk09fZpfdbhOyRJMKZGbRdqAK_NPu0fu8Zd9sN1xk8Yg8tItIJwYRj8kdXRyTB73Wksfk3jezrE_Izx5KaB8ltMxoDyUUUXKKGKEWIxQxQi1GaF3SHkaoxQjtMEIBI7TDCH5Pf8MIbTFCDUYoYATmQNdPyXJ6tvh44dizOZzEC0XtiJgLDeRYpqGSCvt_uCHX0vV5qvBwRKa1HHtcM_AghJ-MOWiAUItAuTKLWSD9Z2RQlIV-TqhIJReZduNEM64CXwVKw695FjAJBkickA_tykeJbVyP56dcR00CReBHLLJCOiHvuqE3plvLoUFvW_FF8NK4QaYKXW6riPngXzBg1N5fxoB_j-_H5YtbPOclub_D-ysyqDdb_RpYbB2_sSD8BaBBpc0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+optimization+of+multi-layer+InAs%2FGaAs+quantum+dots+subject+to+post-growth+thermal+annealing+for+tailoring+the+photoluminescence+emission+beyond+1.3+mu+m&rft.jtitle=Journal+of+applied+physics&rft.au=Ghosh%2C+K&rft.au=Naresh%2C+Y&rft.au=Reddy%2C+N+Srichakradhar&rft.date=2012-07-15&rft.issn=0021-8979&rft.volume=112&rft.issue=2&rft_id=info:doi/10.1063%2F1.4739457&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon