Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3 μ m
In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3–1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. For this purpos...
Saved in:
Published in | Journal of applied physics Vol. 112; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
15.07.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3–1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 μm. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 μm and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths. |
---|---|
AbstractList | In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3-1.55 mu m by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 mu m. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 mu m and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths. In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3–1.55 μm by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 μm. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 μm and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths. |
Author | Naresh, Y. Srichakradhar Reddy, N. Ghosh, K. |
Author_xml | – sequence: 1 givenname: K. surname: Ghosh fullname: Ghosh, K. – sequence: 2 givenname: Y. surname: Naresh fullname: Naresh, Y. – sequence: 3 givenname: N. surname: Srichakradhar Reddy fullname: Srichakradhar Reddy, N. |
BookMark | eNqNkbFuFDEQhi0UJC6BgjdwCcXeeez12S5PEYRIkWhCvfL6ZnOOvPbG9godFS1PwkvwDDwET8IeSYUoqEaj-f5_Rv-ck7OYIhLyGtga2FZsYN0qYVqpnpEVMG0aJSU7IyvGODTaKPOCnJdyzxiAFmZFvt8eMGWs3tlA01T96L_Y6lOkaaDjHKpvgj1iptdxVzZXdlfow2xjnUe6T7XQMvf36CqtiU6p1OYup8_1QOsB87g42hjRBh_v6JAyrdaHlE_dMqfTIdUU5tFHLA6jQ4qjL-W0u8djinsKa_Hr6zf68wcdX5Lngw0FXz3VC_Lp_bvbyw_Nzcer68vdTeO4kbWRfSsRuNR7Y7UFxgUzLWom2r1lkklA1Iq3CGC4FE61vZIG5dYyPfSw1eKCvHn0nXJ6mLHUbrnJYQg2YppLB0qKk0_7H6jggoMAxRd084i6nErJOHTO1z8x17xk0gHrTt_roHv63qJ4-5diyn60-fgP9jdA5J63 |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2014_07_030 crossref_primary_10_1088_2053_1591_ab1fca crossref_primary_10_1016_j_spmi_2021_106919 crossref_primary_10_1016_j_micrna_2022_207328 crossref_primary_10_1007_s10825_020_01577_4 crossref_primary_10_1007_s10825_019_01353_z |
Cites_doi | 10.1063/1.2795661 10.1103/PhysRevB.78.045315 10.1016/j.msec.2005.10.034 10.1063/1.3431388 10.1103/PhysRevB.75.075306 10.1016/j.mejo.2008.06.015 10.1016/j.physe.2006.09.010 10.1007/3-540-31915-8 10.1063/1.348919 10.1063/1.2937095 10.1103/PhysRevLett.82.2528 10.1103/PhysRevB.66.075316 10.1103/PhysRevB.67.165303 10.1063/1.2927496 10.1103/PhysRevB.77.155322 10.1063/1.3587167 10.1088/0957-4484/18/1/015401 10.1063/1.1622443 10.1016/j.spmi.2009.06.002 10.1063/1.2898895 10.1117/12.765735 10.1016/j.materresbull.2010.06.023 10.1063/1.121595 10.1016/j.jcrysgro.2009.02.034 10.1016/j.ssc.2011.06.007 10.1109/LPT.2009.2026630 10.1063/1.1805707 10.1007/s00339-003-2455-3 10.1063/1.123459 10.1007/s00339-010-6005-5 10.1063/1.1504162 10.1103/PhysRevB.71.205319 10.12693/APhysPolA.110.111 10.1063/1.2137880 10.1116/1.3435325 10.1109/3.766837 10.1109/68.853491 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7QQ 7U5 8FD H8D JG9 L7M |
DOI | 10.1063/1.4739457 |
DatabaseName | CrossRef Ceramic Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Solid State and Superconductivity Abstracts Ceramic Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_4739457 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ZCG ~02 7QQ 7U5 8FD H8D JG9 L7M |
ID | FETCH-LOGICAL-c295t-5b45e1258d9a8a1023094e8034da05051ee8724e119253c74b759e56a08fb1683 |
ISSN | 0021-8979 |
IngestDate | Thu Jul 10 22:00:39 EDT 2025 Fri Jul 11 08:01:09 EDT 2025 Tue Jul 01 03:48:34 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c295t-5b45e1258d9a8a1023094e8034da05051ee8724e119253c74b759e56a08fb1683 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1323213172 |
PQPubID | 23500 |
ParticipantIDs | proquest_miscellaneous_1753505148 proquest_miscellaneous_1323213172 crossref_citationtrail_10_1063_1_4739457 crossref_primary_10_1063_1_4739457 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-15 |
PublicationDateYYYYMMDD | 2012-07-15 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of applied physics |
PublicationYear | 2012 |
References | (2023080502481616500_c33) 2007; 18 (2023080502481616500_c34) 2006; 26 Caldas (2023080502481616500_c4) 2009 (2023080502481616500_c28) 2008; 78 (2023080502481616500_c1) 1999; 35 (2023080502481616500_c14) 2010; 103 (2023080502481616500_c5) 2004; 85 (2023080502481616500_c36) 2007; 36 (2023080502481616500_c16) 2009; 311 (2023080502481616500_c26) 2010; 45 (2023080502481616500_c18) 2002; 81 (2023080502481616500_c37) 2004; 79 (2023080502481616500_c20) 2006; 99 (2023080502481616500_c29) 1991; 69 (2023080502481616500_c2) 2000; 12 (2023080502481616500_c23a) 2010; 28 (2023080502481616500_c21) 2006; 110 (2023080502481616500_c9) 2008; 92 (2023080502481616500_c12) 2003; 67 (2023080502481616500_c17) 2009; 46 (2023080502481616500_c25) 2005; 71 (2023080502481616500_c3) 2009; 21 (2023080502481616500_c24) 1999; 82 (2023080502481616500_c19) 2010; 107 (2023080502481616500_c35) 2002; 66 (2023080502481616500_c11) 2008; 92 (2023080502481616500_c31) 2007; 102 (2023080502481616500_c10) 2008; 103 (2023080502481616500_c22) 2007; 75 (2023080502481616500_c7) 1999; 74 Cullis (2023080502481616500_c32) 2005 (2023080502481616500_c15) 1998; 72 (2023080502481616500_c8) 2003; 83 (2023080502481616500_c23b) 2008; 77 (2023080502481616500_c27) 2011; 151 (2023080502481616500_c30) 2009; 40 (2023080502481616500_c6) 2011; 109 (2023080502481616500_c13) 2008; 6909 |
References_xml | – volume: 102 start-page: 083506 year: 2007 ident: 2023080502481616500_c31 publication-title: J. Appl. Phys. doi: 10.1063/1.2795661 – volume: 78 start-page: 045315 year: 2008 ident: 2023080502481616500_c28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.045315 – volume: 26 start-page: 374 year: 2006 ident: 2023080502481616500_c34 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2005.10.034 – volume: 107 start-page: 123107 year: 2010 ident: 2023080502481616500_c19 publication-title: J. Appl. Phys. doi: 10.1063/1.3431388 – volume: 75 start-page: 075306 year: 2007 ident: 2023080502481616500_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.075306 – volume: 40 start-page: 465 year: 2009 ident: 2023080502481616500_c30 publication-title: Microelectron. J. doi: 10.1016/j.mejo.2008.06.015 – volume: 36 start-page: 106 year: 2007 ident: 2023080502481616500_c36 publication-title: Physica E doi: 10.1016/j.physe.2006.09.010 – start-page: 243 volume-title: Proceedings on the 14th Conference on Microscopy of Semiconducting Materials, Oxford, United Kingdom, April 11-14, 2005 year: 2005 ident: 2023080502481616500_c32 doi: 10.1007/3-540-31915-8 – volume: 69 start-page: 827 year: 1991 ident: 2023080502481616500_c29 publication-title: J. Appl. Phys. doi: 10.1063/1.348919 – volume: 92 start-page: 213104 year: 2008 ident: 2023080502481616500_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2937095 – volume: 82 start-page: 2528 year: 1999 ident: 2023080502481616500_c24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.2528 – volume: 66 start-page: 075316 year: 2002 ident: 2023080502481616500_c35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.075316 – volume: 67 start-page: 165303 year: 2003 ident: 2023080502481616500_c12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.165303 – volume: 103 start-page: 103533 year: 2008 ident: 2023080502481616500_c10 publication-title: J. Appl. Phys. doi: 10.1063/1.2927496 – volume: 77 start-page: 155322 year: 2008 ident: 2023080502481616500_c23b publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.155322 – volume: 109 start-page: 104510 year: 2011 ident: 2023080502481616500_c6 publication-title: J. Appl. Phys. doi: 10.1063/1.3587167 – volume: 18 start-page: 15401 year: 2007 ident: 2023080502481616500_c33 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/1/015401 – volume: 83 start-page: 3716 year: 2003 ident: 2023080502481616500_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1622443 – volume: 46 start-page: 611 year: 2009 ident: 2023080502481616500_c17 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2009.06.002 – volume: 92 start-page: 111906 year: 2008 ident: 2023080502481616500_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2898895 – volume: 6909 start-page: 690903 year: 2008 ident: 2023080502481616500_c13 publication-title: Proc. SPIE doi: 10.1117/12.765735 – volume: 45 start-page: 1466 year: 2010 ident: 2023080502481616500_c26 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2010.06.023 – volume: 72 start-page: 3335 year: 1998 ident: 2023080502481616500_c15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.121595 – volume: 311 start-page: 2281 year: 2009 ident: 2023080502481616500_c16 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.02.034 – volume: 151 start-page: 1394 year: 2011 ident: 2023080502481616500_c27 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2011.06.007 – volume: 21 start-page: 1332 year: 2009 ident: 2023080502481616500_c3 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2009.2026630 – volume: 85 start-page: 3050 year: 2004 ident: 2023080502481616500_c5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1805707 – volume: 79 start-page: 587 year: 2004 ident: 2023080502481616500_c37 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-003-2455-3 – volume: 74 start-page: 1111 year: 1999 ident: 2023080502481616500_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123459 – volume: 103 start-page: 245 year: 2010 ident: 2023080502481616500_c14 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-010-6005-5 – volume: 81 start-page: 1708 year: 2002 ident: 2023080502481616500_c18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1504162 – volume: 71 start-page: 205319 year: 2005 ident: 2023080502481616500_c25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.205319 – volume: 110 start-page: 111 year: 2006 ident: 2023080502481616500_c21 publication-title: Acta Phys. Pol. A doi: 10.12693/APhysPolA.110.111 – volume: 99 start-page: 023521 year: 2006 ident: 2023080502481616500_c20 publication-title: J. Appl. Phys. doi: 10.1063/1.2137880 – volume: 28 start-page: C5E25 year: 2010 ident: 2023080502481616500_c23a publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3435325 – volume: 35 start-page: 936 year: 1999 ident: 2023080502481616500_c1 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.766837 – start-page: 527 volume-title: Proceedings of the 29th International Conference on the Physics of Semiconductors year: 2009 ident: 2023080502481616500_c4 – volume: 12 start-page: 759 year: 2000 ident: 2023080502481616500_c2 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/68.853491 |
SSID | ssj0011839 |
Score | 2.0737865 |
Snippet | In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs)... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Annealing Gallium arsenide Gallium arsenides Indium arsenides Multilayers Quantum dots Semiconductors Telecommunications Wavelengths |
Title | Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3 μ m |
URI | https://www.proquest.com/docview/1323213172 https://www.proquest.com/docview/1753505148 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagExI8IBggxi8ZxANSlS5O7NR5rGDdhEpBWiv1LXISZ5FYk6lJX_h7-EO5i500FQUNXqIqdSPH9_Xuu_PdmZD3YAPSVOnQ0WEQOzzj2onHgjtSuF4SsDhkaZPlOw8ulvzzSqx2aWNNdUkdj5IfB-tK_keqcA_kilWy_yDZ7qFwAz6DfOEKEobrbWXcVSGW8N9f26LKZtMcMwWdawWUGpTABMQ1PVeTCqsowcysh-CNVsNqG2McBgnoTVnVzhU45RiXzVFfYxOBAnhkm2uJuaYmXa8pr8rLGjUbps0njXrAk-Mw9jaMTVUMG_kwi-H6D_xXWf5rYisdtT_Pyyrfi7_OsUQq39kK3B7SqTUOw8sNJv5_36g0V5t-DIM1-a6mirOrKWCODM2xMp1eZl4PgN5BfQ8EC0MPIz72Q246Xe_31J5_jabL2SxanK0Wd8mRB86ENyBHk09fZpfdbhOyRJMKZGbRdqAK_NPu0fu8Zd9sN1xk8Yg8tItIJwYRj8kdXRyTB73Wksfk3jezrE_Izx5KaB8ltMxoDyUUUXKKGKEWIxQxQi1GaF3SHkaoxQjtMEIBI7TDCH5Pf8MIbTFCDUYoYATmQNdPyXJ6tvh44dizOZzEC0XtiJgLDeRYpqGSCvt_uCHX0vV5qvBwRKa1HHtcM_AghJ-MOWiAUItAuTKLWSD9Z2RQlIV-TqhIJReZduNEM64CXwVKw695FjAJBkickA_tykeJbVyP56dcR00CReBHLLJCOiHvuqE3plvLoUFvW_FF8NK4QaYKXW6riPngXzBg1N5fxoB_j-_H5YtbPOclub_D-ysyqDdb_RpYbB2_sSD8BaBBpc0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+optimization+of+multi-layer+InAs%2FGaAs+quantum+dots+subject+to+post-growth+thermal+annealing+for+tailoring+the+photoluminescence+emission+beyond+1.3+mu+m&rft.jtitle=Journal+of+applied+physics&rft.au=Ghosh%2C+K&rft.au=Naresh%2C+Y&rft.au=Reddy%2C+N+Srichakradhar&rft.date=2012-07-15&rft.issn=0021-8979&rft.volume=112&rft.issue=2&rft_id=info:doi/10.1063%2F1.4739457&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |