Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China

China feeds 22 percent of people with 9 percent of the world’s cultivated land. The spatial layout optimization of cultivated land is of strategic significance to the sustainable development of socio-economy and ecology. Based on the integrated protection systematic perspective, namely “life communi...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 14; no. 7; p. 3821
Main Authors Sun, Qian, Wu, Mingjie, Du, Peiyu, Qi, Wei, Yu, Xinyang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:China feeds 22 percent of people with 9 percent of the world’s cultivated land. The spatial layout optimization of cultivated land is of strategic significance to the sustainable development of socio-economy and ecology. Based on the integrated protection systematic perspective, namely “life community of mountain, water, forestland, cultivated land, lake, and grassland”, this study explored ways to optimize the spatial layout of cultivated land. Comprehensive Ecological Niche Suitability of Cultivated Land was quantitatively analyzed utilizing a comprehensive ecological niche suitability evaluation model and GIS analytic methodologies. The contribution rates of various natural elements to cultivated land from 2000 to 2020 were determined by the path analysis, and the land-conversion rules for the ecological optimization scenario were developed accordingly. The GeoSOS-FLUS model was used to simulate land use in 2040 under two scenarios: natural and ecological optimization. Results found that the study area showed varied patterns and can be classified into five grades: extreme-suitability, high-suitability, moderate-suitability, low-suitability, and unsuitability zones, based on the Comprehensive Ecological Niche Suitability of Cultivated Land. The evolution of orchard land in the extreme-suitability and high -suitability zone and forestland in the unsuitability zone contributed the most to the area and quality change of cultivated land from 2000 to 2020. Compared with the results of the natural scenario, the simulation results of the ecological optimization scenario in 2040 increased the area of cultivated land, improved the ecological niche suitability, and the coordination between cultivated land and other natural elements.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14073821