A Pilot Protection for HVDC Transmission Lines Based on Transient Energy Ratio of DC Filter Link
To overcome shortages in the traditional current differential protection for HVDC transmission lines, a pilot protection based on transient energy ratio is proposed. The fault identification criterion is put forward based on the impedance-frequency characteristic of the line boundary, and the fault...
Saved in:
Published in | IEEE transactions on power delivery Vol. 35; no. 4; pp. 1695 - 1706 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To overcome shortages in the traditional current differential protection for HVDC transmission lines, a pilot protection based on transient energy ratio is proposed. The fault identification criterion is put forward based on the impedance-frequency characteristic of the line boundary, and the fault analysis which shows that under internal faults, with regard to either terminal of the dc line, the transient energy within a specific frequency band on the line side of the boundary is much greater than that on the valve side of the boundary, whereas after rectifier-terminal (inverter-terminal) external faults, the transient energy on the line side of the rectifier-terminal (inverter-terminal) boundary is much less than that on the valve side of the boundary. Moreover, the lightning disturbance identification criterion is implemented based on the magnitude ratio of fault components of high- and low-frequency band currents. Fault-pole selection is constructed by using the fault components of pole voltages. Simulation results demonstrate that the proposed scheme, with low computational complexity, can distinguish internal faults from external ones and protect the entire line reliably. It can also identify high-impedance faults and select the faulted pole correctly. Besides, it is not subject to lightning interferences and the dc line distributed capacitor. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2019.2950350 |