Robust Cooperative Control of Isolated AC Microgrids Subject to Unreliable Communications: A Low-Gain Feedback Approach

Inherent nonlinearities and uncertainties are inseparable parts of the real-life engineering systems, which make theoretical analyzes and control system designs more challenging. Usually, most of the physical parts in control systems such as controllers and actuators are subjected to saturation. On...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 16; no. 1; pp. 55 - 66
Main Authors Afshari, Amir, Karrari, Mehdi, Baghaee, Hamid Reza, Gharehpetian, Gevork B., Guerrero, Josep M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-8184
1937-9234
DOI10.1109/JSYST.2021.3056481

Cover

Loading…
More Information
Summary:Inherent nonlinearities and uncertainties are inseparable parts of the real-life engineering systems, which make theoretical analyzes and control system designs more challenging. Usually, most of the physical parts in control systems such as controllers and actuators are subjected to saturation. On the other hand, uncertainties are ubiquitous in the physical systems, which demand some necessities in the design of the control system. Additionally, unreliability in communication networks is another practical constraint in multiagent systems, which is required to be considered. In this article, based on the mentioned issues, a distributed robust algorithm is proposed for the semiglobal stabilization of the voltage and frequency of isolated (islanded) ac microgrids considering parameters uncertainties, static nonlinearity of actuators, and unreliability in the communication network. In this regard, by employing an adaptive low-gain feedback protocol, the robust performance of the closed-loop system is guaranteed. Finally, to evaluate the proposed control strategy's performance, digital time-domain simulations are carried out on a test microgrid system in MATLAB/Simulink environment, and the results are compared with several previously reported methods. Simulation results and comparison with previous works reveal the proposed method's effectiveness and accuracy in regulating the microgrid voltage/frequency and providing accurate proportional active power sharing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1932-8184
1937-9234
DOI:10.1109/JSYST.2021.3056481