MEMS Resonators for Frequency Reference and Timing Applications
An overview of microelectromechanical systems (MEMS) resonators for frequency reference and timing applications is presented. The progress made in the past few decades in design, modeling, fabrication and packaging of MEMS resonators is summarized. In particular, the state-of-the-art technologies fo...
Saved in:
Published in | Journal of microelectromechanical systems Vol. 29; no. 5; pp. 1137 - 1166 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An overview of microelectromechanical systems (MEMS) resonators for frequency reference and timing applications is presented. The progress made in the past few decades in design, modeling, fabrication and packaging of MEMS resonators is summarized. In particular, the state-of-the-art technologies for improving the overall performance of MEMS resonators, such as quality factor (<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>), motional impedance, temperature sensitivity, and initial frequency uniformity, are reviewed in detail. The challenges and opportunities during the commercialization of MEMS resonators are also stated, and future development trends driven either by technology or market are outlined. This paper intends to provide an outlook for possible research directions of MEMS resonators in frequency reference and timing applications. With outstanding reliability, unique multi-frequency functionality on a single chip, and high accuracy, MEMS resonators show great potential for replacing the quartz crystal resonators which have been dominating the timing market since 1920s. [2020-0106] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2020.3020787 |