Feature Refinement and Filter Network for Person Re-Identification

In the task of person re-identification, the attention mechanism and fine-grained information have been proved to be effective. However, it has been observed that models often focus on the extraction of features with strong discrimination, and neglect other valuable features. The extracted fine-grai...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 9; pp. 3391 - 3402
Main Authors Ning, Xin, Gong, Ke, Li, Weijun, Zhang, Liping, Bai, Xiao, Tian, Shengwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the task of person re-identification, the attention mechanism and fine-grained information have been proved to be effective. However, it has been observed that models often focus on the extraction of features with strong discrimination, and neglect other valuable features. The extracted fine-grained information may include redundancies. In addition, current methods lack an effective scheme to remove background interference. Therefore, this paper proposes the feature refinement and filter network to solve the above problems from three aspects: first, by weakening the high response features, we aim to identify highly valuable features and extract the complete features of persons, thereby enhancing the robustness of the model; second, by positioning and intercepting the high response areas of persons, we eliminate the interference arising from background information and strengthen the response of the model to the complete features of persons; finally, valuable fine-grained features are selected using a multi-branch attention network for person re-identification to enhance the performance of the model. Our extensive experiments on the benchmark Market-1501, DukeMTMC-reID, CUHK03 and MSMT17 person re-identification datasets demonstrate that the performance of our method is comparable to that of state-of-the-art approaches.
AbstractList In the task of person re-identification, the attention mechanism and fine-grained information have been proved to be effective. However, it has been observed that models often focus on the extraction of features with strong discrimination, and neglect other valuable features. The extracted fine-grained information may include redundancies. In addition, current methods lack an effective scheme to remove background interference. Therefore, this paper proposes the feature refinement and filter network to solve the above problems from three aspects: first, by weakening the high response features, we aim to identify highly valuable features and extract the complete features of persons, thereby enhancing the robustness of the model; second, by positioning and intercepting the high response areas of persons, we eliminate the interference arising from background information and strengthen the response of the model to the complete features of persons; finally, valuable fine-grained features are selected using a multi-branch attention network for person re-identification to enhance the performance of the model. Our extensive experiments on the benchmark Market-1501, DukeMTMC-reID, CUHK03 and MSMT17 person re-identification datasets demonstrate that the performance of our method is comparable to that of state-of-the-art approaches.
Author Li, Weijun
Gong, Ke
Bai, Xiao
Ning, Xin
Zhang, Liping
Tian, Shengwei
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0001-7897-1673
  surname: Ning
  fullname: Ning, Xin
  email: ningxin@semi.ac.cn
  organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Ke
  orcidid: 0000-0002-4767-5916
  surname: Gong
  fullname: Gong, Ke
  email: gongke@wavewisdom-bj.com
  organization: Cognitive Computing Technology Joint Laboratory, Wave Group, Beijing, China
– sequence: 3
  givenname: Weijun
  orcidid: 0000-0001-9668-2883
  surname: Li
  fullname: Li, Weijun
  email: wjli@semi.ac.cn
  organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Liping
  orcidid: 0000-0001-6508-3757
  surname: Zhang
  fullname: Zhang, Liping
  email: zliping@semi.ac.cn
  organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Xiao
  surname: Bai
  fullname: Bai, Xiao
  email: baixiao@buaa.edu.cn
  organization: State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Jiangxi Research Institute, Beihang University, Beijing, China
– sequence: 6
  givenname: Shengwei
  orcidid: 0000-0003-3525-5102
  surname: Tian
  fullname: Tian, Shengwei
  organization: School of Software, Xinjiang University, Xinjiang, China
BookMark eNp9kE1PAjEQhhujiYj-Ab1s4nmx04_d7lGJKAlRo-i1Kcs0KUKL3RLjv7eA8eDB0_TwPp13nhNy6INHQs6BDgBoczUdvrxNB4wyOuBUcMqqA9IDKVXJGJWH-U0llIqBPCYnXbegFIQSdY_cjNCkTcTiGa3zuEKfCuPnxcgtE8biAdNniO-FDbF4wtgFn4PleJ5jzrrWJBf8KTmyZtnh2c_sk9fR7XR4X04e78bD60nZskamkqOqwDYG57mWFIKxSkFuMVMWbF3NuIFZbQRyhdiIViol8gG1bQHBMil5n1zu_13H8LHBLulF2ESfV2omK1XXNac0p9Q-1cbQdRGtbl3a9UzRuKUGqrfG9M6Y3hrTP8Yyyv6g6-hWJn79D13sIYeIv0DDlOTA-DcOpXfR
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3399406
crossref_primary_10_1007_s11042_022_12155_0
crossref_primary_10_1155_2022_2227049
crossref_primary_10_1155_2022_6064262
crossref_primary_10_1109_TETCI_2024_3406411
crossref_primary_10_1007_s11042_023_15719_w
crossref_primary_10_1109_TNSRE_2023_3283045
crossref_primary_10_1016_j_displa_2021_102094
crossref_primary_10_1155_2021_9934363
crossref_primary_10_1080_09540091_2021_2012423
crossref_primary_10_1007_s00521_023_08301_w
crossref_primary_10_1016_j_bdr_2023_100409
crossref_primary_10_1016_j_imavis_2024_105038
crossref_primary_10_1155_2021_2348494
crossref_primary_10_1016_j_patcog_2023_109669
crossref_primary_10_3390_app13137611
crossref_primary_10_3390_math12162495
crossref_primary_10_3390_s21103476
crossref_primary_10_1049_ipr2_12688
crossref_primary_10_3390_s22093328
crossref_primary_10_1155_2021_5574152
crossref_primary_10_1109_ACCESS_2023_3243553
crossref_primary_10_1080_25765299_2023_2194122
crossref_primary_10_1109_TCSVT_2021_3082775
crossref_primary_10_1155_2022_8011124
crossref_primary_10_1002_cpe_6885
crossref_primary_10_1007_s00521_022_07340_z
crossref_primary_10_1016_j_jvcir_2023_103772
crossref_primary_10_1007_s11042_022_12856_6
crossref_primary_10_1007_s11042_024_18440_4
crossref_primary_10_1109_TMM_2024_3355644
crossref_primary_10_1007_s11042_023_15546_z
crossref_primary_10_1007_s11042_022_12276_6
crossref_primary_10_1109_TCSS_2024_3403691
crossref_primary_10_1109_TCSVT_2022_3216769
crossref_primary_10_1155_2022_7104750
crossref_primary_10_1007_s11227_024_06731_4
crossref_primary_10_1007_s12145_024_01479_0
crossref_primary_10_1109_ACCESS_2022_3223426
crossref_primary_10_1145_3649900
crossref_primary_10_3390_app112210809
crossref_primary_10_1080_09540091_2021_2024510
crossref_primary_10_1007_s11277_022_09790_z
crossref_primary_10_1007_s11280_024_01298_9
crossref_primary_10_1007_s00500_023_08326_2
crossref_primary_10_1155_2022_5776341
crossref_primary_10_1155_2021_7510641
crossref_primary_10_1111_exsy_13675
crossref_primary_10_1016_j_displa_2022_102192
crossref_primary_10_1109_TCSVT_2024_3379577
crossref_primary_10_1007_s00371_024_03516_x
crossref_primary_10_1109_TCSVT_2022_3144775
crossref_primary_10_1007_s11263_025_02407_5
crossref_primary_10_1007_s41095_024_0424_2
crossref_primary_10_3390_s24092795
crossref_primary_10_1109_TCSVT_2022_3188551
crossref_primary_10_1145_3628452
crossref_primary_10_1080_09540091_2023_2286186
crossref_primary_10_3390_app13074453
crossref_primary_10_7717_peerj_cs_1098
crossref_primary_10_1016_j_cviu_2023_103749
crossref_primary_10_1109_TCSVT_2023_3273719
crossref_primary_10_1007_s00530_024_01638_9
crossref_primary_10_1007_s11042_023_14369_2
crossref_primary_10_1109_ACCESS_2024_3428438
crossref_primary_10_1007_s11042_022_13152_z
crossref_primary_10_1109_TCSVT_2021_3118060
crossref_primary_10_1109_TCSVT_2024_3382322
crossref_primary_10_1155_2022_4509434
crossref_primary_10_1155_2021_2602385
crossref_primary_10_1002_cpe_6704
crossref_primary_10_1016_j_patcog_2025_111591
crossref_primary_10_3390_s21082842
crossref_primary_10_1155_2022_7253832
crossref_primary_10_1109_TCSVT_2023_3340346
crossref_primary_10_1109_TCSVT_2023_3287300
crossref_primary_10_1007_s11042_022_14016_2
crossref_primary_10_1007_s11042_023_17665_z
crossref_primary_10_1002_cpe_6850
crossref_primary_10_1007_s11063_023_11294_1
crossref_primary_10_1002_cpe_6331
crossref_primary_10_1002_cpe_7144
crossref_primary_10_1007_s11042_021_11667_5
crossref_primary_10_1016_j_neunet_2023_11_003
crossref_primary_10_1016_j_engappai_2023_106200
crossref_primary_10_1016_j_displa_2021_102050
crossref_primary_10_1002_for_3265
crossref_primary_10_3389_fnbot_2022_1006755
crossref_primary_10_1109_TCSVT_2023_3310015
crossref_primary_10_1007_s11042_022_12055_3
crossref_primary_10_1155_2022_4502430
crossref_primary_10_1016_j_imavis_2023_104786
crossref_primary_10_1109_TCSVT_2022_3225285
crossref_primary_10_1016_j_imavis_2024_105111
crossref_primary_10_32604_cmc_2024_050384
crossref_primary_10_1155_2021_6971906
crossref_primary_10_1155_2022_3496810
crossref_primary_10_1016_j_image_2022_116783
crossref_primary_10_1109_TMM_2024_3521843
crossref_primary_10_1155_2021_3370580
crossref_primary_10_1016_j_compeleceng_2023_108755
crossref_primary_10_1049_cvi2_12107
crossref_primary_10_1109_JSEN_2021_3130951
crossref_primary_10_1155_2022_7781369
crossref_primary_10_1007_s00521_021_06027_1
crossref_primary_10_32604_cmes_2022_020857
crossref_primary_10_1109_TCSVT_2023_3338813
crossref_primary_10_3389_fnins_2023_1226154
crossref_primary_10_1109_JIOT_2024_3450675
crossref_primary_10_3390_app12157467
crossref_primary_10_1016_j_displa_2021_102107
crossref_primary_10_1016_j_inffus_2024_102438
crossref_primary_10_1109_JSTSP_2023_3260627
crossref_primary_10_1007_s00521_021_06151_y
crossref_primary_10_1080_09540091_2022_2139352
crossref_primary_10_1109_TITS_2023_3316068
crossref_primary_10_1007_s11042_023_15718_x
crossref_primary_10_1016_j_dsp_2024_104826
crossref_primary_10_1002_cpe_6873
crossref_primary_10_1109_ACCESS_2023_3346940
crossref_primary_10_1007_s11760_025_03983_2
crossref_primary_10_1109_TCSVT_2022_3194084
crossref_primary_10_1002_cpe_7043
crossref_primary_10_1016_j_compbiomed_2024_107955
crossref_primary_10_1109_TCSVT_2022_3213680
crossref_primary_10_1109_TCSVT_2024_3392831
crossref_primary_10_1007_s11042_022_12250_2
crossref_primary_10_1007_s11042_022_12078_w
crossref_primary_10_1109_JSEN_2022_3181238
crossref_primary_10_1109_TCSVT_2022_3173263
crossref_primary_10_1007_s11042_022_12171_0
crossref_primary_10_1007_s11760_024_03695_z
crossref_primary_10_1109_TCSVT_2023_3309647
crossref_primary_10_1016_j_inffus_2023_102128
crossref_primary_10_1109_TCSVT_2023_3261898
crossref_primary_10_3390_a14120361
crossref_primary_10_1016_j_displa_2023_102567
crossref_primary_10_1155_2021_1651560
crossref_primary_10_1080_09540091_2021_2015748
crossref_primary_10_1016_j_displa_2022_102149
crossref_primary_10_1109_TCSVT_2024_3376373
crossref_primary_10_1016_j_neucom_2024_128011
crossref_primary_10_1007_s12559_023_10145_4
crossref_primary_10_1109_ACCESS_2023_3302512
crossref_primary_10_1109_TCSVT_2023_3285046
crossref_primary_10_1155_2022_6567123
Cites_doi 10.1109/CVPR.2018.00739
10.1109/ICCV.2019.00386
10.1109/TIP.2019.2896952
10.1109/ICCV.2017.410
10.1016/j.imavis.2020.103875
10.1109/CVPR.2018.00902
10.1007/978-3-030-01225-0_30
10.1109/CVPR.2019.00871
10.1007/978-3-030-01240-3_15
10.1109/TCSVT.2019.2957467
10.1109/CVPR.2018.00839
10.1109/CVPR.2018.00720
10.1109/CVPR.2018.00051
10.1109/AUTOID.2005.48
10.1109/CVPR.2018.00016
10.1109/CVPR42600.2020.01409
10.1109/CVPRW.2019.00190
10.1109/ICCV.2019.00379
10.1016/j.jvcir.2018.11.044
10.1109/ICCV.2019.00385
10.1109/CVPR.2019.00730
10.1109/ICIP.2019.8803244
10.1109/TCSVT.2018.2873599
10.1109/CVPR.2018.00117
10.1109/ICCV.2019.00046
10.1109/CVPR.2019.00148
10.1109/ICIP.2019.8803292
10.1109/CVPR.2018.00562
10.1109/ICCV.2015.133
10.1145/3240508.3240552
10.1109/CVPR.2018.00243
10.1109/TPAMI.2018.2807450
10.1109/ICCV.2019.00380
10.1109/CVPR.2018.00046
10.1109/TIP.2020.2975712
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298594
10.1109/CVPR.2018.00225
10.1109/CVPR.2016.308
10.1609/aaai.v33i01.33018933
10.1109/ICCV.2019.00844
10.1109/CVPR.2018.00607
10.1109/CVPR.2018.00745
10.1109/CVPR.2014.27
10.1109/TETCI.2018.2883348
10.1109/CVPR.2019.00588
10.1007/978-3-030-60636-7_2
10.1109/ACCESS.2019.2929523
10.1016/j.neucom.2019.10.083
10.1109/CVPR.2018.00960
10.1109/CVPR.2019.01096
10.1109/CVPR.2018.00226
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2019.00076
10.1109/ICCV.2017.381
10.1109/CVPR.2019.00954
10.1007/978-3-319-48881-3_2
10.5244/C.31.18
10.1109/ICIP.2019.8804419
10.1109/TIP.2018.2851098
10.1109/TCSVT.2019.2957539
10.1007/978-3-030-01225-0_23
10.1109/ICIP.2019.8803796
10.1609/aaai.v34i07.7000
10.1016/j.patcog.2019.107016
10.1109/CVPR.2018.00129
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3043026
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 3402
ExternalDocumentID 10_1109_TCSVT_2020_3043026
9285312
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61901436
  funderid: 10.13039/501100001809
– fundername: Shenzhen Wave Kingdom Company Ltd
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-3e861f9aed55854422681148b8f1f76b3a1b7a4e38ee94c58841557fc1e1f2553
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 04:00:18 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Aug 27 02:27:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-3e861f9aed55854422681148b8f1f76b3a1b7a4e38ee94c58841557fc1e1f2553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4767-5916
0000-0003-3525-5102
0000-0001-9668-2883
0000-0001-7897-1673
0000-0001-6508-3757
PQID 2568777300
PQPubID 85433
PageCount 12
ParticipantIDs ieee_primary_9285312
crossref_citationtrail_10_1109_TCSVT_2020_3043026
proquest_journals_2568777300
crossref_primary_10_1109_TCSVT_2020_3043026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref58
ref14
ref53
ref52
hermans (ref42) 2017; abs 1703 0
ref55
ref11
zhu (ref23) 2019
ref54
ref10
ref17
ref16
ref19
ref18
ref51
zhang (ref66) 2020
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
devries (ref26) 2017
ref35
ref34
ref37
ref36
ref74
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
hu (ref27) 2019
zheng (ref15) 2016
ref68
ref24
ref67
ref69
ref25
ref64
ref20
ref63
ref22
ref65
ref21
ref28
ref29
simonyan (ref4) 2015
zheng (ref31) 2019
ref60
ref62
ref61
References_xml – ident: ref16
  doi: 10.1109/CVPR.2018.00739
– ident: ref54
  doi: 10.1109/ICCV.2019.00386
– year: 2019
  ident: ref27
  article-title: See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification
  publication-title: arXiv 1901 09891
– year: 2019
  ident: ref31
  article-title: Learning similarity attention
  publication-title: arXiv 1911 07381
– year: 2017
  ident: ref26
  article-title: Improved regularization of convolutional neural networks with cutout
  publication-title: arXiv 1708 04552
– ident: ref73
  doi: 10.1109/TIP.2019.2896952
– ident: ref37
  doi: 10.1109/ICCV.2017.410
– ident: ref69
  doi: 10.1016/j.imavis.2020.103875
– ident: ref52
  doi: 10.1109/CVPR.2018.00902
– ident: ref10
  doi: 10.1007/978-3-030-01225-0_30
– ident: ref13
  doi: 10.1109/CVPR.2019.00871
– ident: ref35
  doi: 10.1007/978-3-030-01240-3_15
– ident: ref64
  doi: 10.1109/TCSVT.2019.2957467
– ident: ref21
  doi: 10.1109/CVPR.2018.00839
– ident: ref51
  doi: 10.1109/CVPR.2018.00720
– ident: ref8
  doi: 10.1109/CVPR.2018.00051
– ident: ref47
  doi: 10.1109/AUTOID.2005.48
– ident: ref61
  doi: 10.1109/CVPR.2018.00016
– ident: ref65
  doi: 10.1109/CVPR42600.2020.01409
– ident: ref59
  doi: 10.1109/CVPRW.2019.00190
– ident: ref30
  doi: 10.1109/ICCV.2019.00379
– ident: ref71
  doi: 10.1016/j.jvcir.2018.11.044
– ident: ref55
  doi: 10.1109/ICCV.2019.00385
– ident: ref7
  doi: 10.1109/CVPR.2019.00730
– ident: ref24
  doi: 10.1109/ICIP.2019.8803244
– year: 2016
  ident: ref15
  article-title: Person re-identification: Past, present and future
  publication-title: arXiv 1610 02984
– ident: ref62
  doi: 10.1109/TCSVT.2018.2873599
– start-page: 1
  year: 2015
  ident: ref4
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc 3rd Int Conf Learn Represent (ICLR) Conf Track
– ident: ref9
  doi: 10.1109/CVPR.2018.00117
– ident: ref58
  doi: 10.1109/ICCV.2019.00046
– ident: ref43
  doi: 10.1109/CVPR.2019.00148
– ident: ref11
  doi: 10.1109/ICIP.2019.8803292
– ident: ref48
  doi: 10.1109/CVPR.2018.00562
– ident: ref44
  doi: 10.1109/ICCV.2015.133
– ident: ref20
  doi: 10.1145/3240508.3240552
– ident: ref18
  doi: 10.1109/CVPR.2018.00243
– ident: ref14
  doi: 10.1109/TPAMI.2018.2807450
– ident: ref56
  doi: 10.1109/ICCV.2019.00380
– ident: ref39
  doi: 10.1109/CVPR.2018.00046
– ident: ref60
  doi: 10.1109/TIP.2020.2975712
– ident: ref2
  doi: 10.1109/CVPR.2016.90
– ident: ref3
  doi: 10.1109/CVPR.2015.7298594
– ident: ref49
  doi: 10.1109/CVPR.2018.00225
– ident: ref41
  doi: 10.1109/CVPR.2016.308
– ident: ref70
  doi: 10.1609/aaai.v33i01.33018933
– ident: ref38
  doi: 10.1109/ICCV.2019.00844
– ident: ref6
  doi: 10.1109/CVPR.2018.00607
– ident: ref32
  doi: 10.1109/CVPR.2018.00745
– ident: ref46
  doi: 10.1109/CVPR.2014.27
– ident: ref74
  doi: 10.1109/TETCI.2018.2883348
– ident: ref29
  doi: 10.1109/CVPR.2019.00588
– ident: ref22
  doi: 10.1007/978-3-030-60636-7_2
– ident: ref67
  doi: 10.1109/ACCESS.2019.2929523
– ident: ref72
  doi: 10.1016/j.neucom.2019.10.083
– ident: ref5
  doi: 10.1109/CVPR.2018.00960
– ident: ref40
  doi: 10.1109/CVPR.2019.01096
– ident: ref17
  doi: 10.1109/CVPR.2018.00226
– ident: ref33
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref19
  doi: 10.1109/CVPR.2019.00076
– ident: ref28
  doi: 10.1109/ICCV.2017.381
– ident: ref57
  doi: 10.1109/CVPR.2019.00954
– ident: ref45
  doi: 10.1007/978-3-319-48881-3_2
– ident: ref34
  doi: 10.5244/C.31.18
– ident: ref36
  doi: 10.1109/ICIP.2019.8804419
– ident: ref68
  doi: 10.1109/TIP.2018.2851098
– ident: ref63
  doi: 10.1109/TCSVT.2019.2957539
– start-page: 3183
  year: 2020
  ident: ref66
  article-title: Relation-aware global attention for person re-identification
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– start-page: 2274
  year: 2019
  ident: ref23
  article-title: Multi-branch context-aware network for person re-identification
  publication-title: Proc IEEE Int Conf Image Process
– ident: ref53
  doi: 10.1007/978-3-030-01225-0_23
– volume: abs 1703 0
  start-page: 1
  year: 2017
  ident: ref42
  article-title: In defense of the triplet loss for person re-identification
  publication-title: CoRR
– ident: ref12
  doi: 10.1109/ICIP.2019.8803796
– ident: ref25
  doi: 10.1609/aaai.v34i07.7000
– ident: ref1
  doi: 10.1016/j.patcog.2019.107016
– ident: ref50
  doi: 10.1109/CVPR.2018.00129
SSID ssj0014847
Score 2.6778214
Snippet In the task of person re-identification, the attention mechanism and fine-grained information have been proved to be effective. However, it has been observed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3391
SubjectTerms attention
deep learning
Feature extraction
Image recognition
Information filters
Interference
Person re-identification
Person Search
Robustness
Task analysis
Training
Title Feature Refinement and Filter Network for Person Re-Identification
URI https://ieeexplore.ieee.org/document/9285312
https://www.proquest.com/docview/2568777300
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKT1402xpm7bpUYdjCBuim-xWmjQBUTaZ7cW_3vfSHwwV8VZKUkJe0vd9yXvfI-QyjD0pIp1RIZSiPFOcijjyqGKBF7GAGWXwvGMyDcdzfr8IFi1y3eTCaK1t8Jnu46O9y89WqsCjskHsgXPBksJbQNzKXK3mxoALW0wM4IJLBfixOkGGxYPZ8Ol5BlTQA4aKElcopLDhhGxVlR-_YutfRntkUo-sDCt57Re57KvPb6KN_x36PtmtgKZzU66MA9LSy0OysyE_2CG3iP-KtXYetYG3-AUnXWbO6AWv0J1pGSHuAKx1Hiwwh4a0zOw11VHfEZmP7mbDMa1qKlDlxUFOfS1C18SpzgIgChzzaAVSIimMa6JQ-qkro5RrX2gdc4VprIA4IqNc7RqgH_4xaS9XS31CnChAKR4RppJjB3D8YFgjmQwiIIE-6xK3nuREVYLjWPfiLbHEg8WJNUyChkkqw3TJVdPnvZTb-LN1B2e6aVlNcpf0alsm1Y78SADaofShz9jp773OyLaH8So2fqxH2vm60OcAOHJ5YVfaF-cCzx8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NTxRBEK3gekAPoqJxFaQPeiK99PR89Rw8CLhZBDYEFsNtmO6pTgxkMexujP4W_4r_zaqe2Q0Rw43E22TSPZnpepl61V31CuBdVmhrcqylMc7JpHaJNEWupVOpzlWqvPO833E4zAanyeez9GwJfi1qYRAxJJ9hjy_DWX595Wa8VbZVaHIukW5TKPfxx3cK0CYf9nbJmu-17n8a7Qxk20NAOl2kUxmjySJfVFinRIwTrhs1HAJY4yOfZzauIptXCcYGsUgcl22Sh829izDyRLdjeu4DeEg8I9VNddjijCIxoX0ZEZRIGvKc85IcVWyNdk6-jCj41BQTs6gWSzfccHuhj8utn3_waP0V-D1fiyaR5aI3m9qe-_mXTOT_ulhP4UlLpcXHBvvPYAnHz-HxDYHFVdhmhju7RnGMnu7yG4tqXIv-V04SEMMmB14QcRdHIfSggbKpXfbtZuYLOL2Xj3gJnfHVGF-ByFMWGzJZZROeQNSGoOutsmlOYW6suhDNjVq6VlKdO3tcliG0UkUZgFAyEMoWCF3YXMz51giK3Dl6lS27GNkatQtrc-yU7T9nUhJ5ZXHHWKnX_561AcuD0eFBebA33H8DjzRn54RsuTXoTK9nuE70amrfBpQLOL9vpPwBWFgqcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Refinement+and+Filter+Network+for+Person+Re-Identification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Ning%2C+Xin&rft.au=Gong%2C+Ke&rft.au=Li%2C+Weijun&rft.au=Zhang%2C+Liping&rft.date=2021-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=9&rft.spage=3391&rft_id=info:doi/10.1109%2FTCSVT.2020.3043026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon