Feature Refinement and Filter Network for Person Re-Identification

In the task of person re-identification, the attention mechanism and fine-grained information have been proved to be effective. However, it has been observed that models often focus on the extraction of features with strong discrimination, and neglect other valuable features. The extracted fine-grai...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 9; pp. 3391 - 3402
Main Authors Ning, Xin, Gong, Ke, Li, Weijun, Zhang, Liping, Bai, Xiao, Tian, Shengwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the task of person re-identification, the attention mechanism and fine-grained information have been proved to be effective. However, it has been observed that models often focus on the extraction of features with strong discrimination, and neglect other valuable features. The extracted fine-grained information may include redundancies. In addition, current methods lack an effective scheme to remove background interference. Therefore, this paper proposes the feature refinement and filter network to solve the above problems from three aspects: first, by weakening the high response features, we aim to identify highly valuable features and extract the complete features of persons, thereby enhancing the robustness of the model; second, by positioning and intercepting the high response areas of persons, we eliminate the interference arising from background information and strengthen the response of the model to the complete features of persons; finally, valuable fine-grained features are selected using a multi-branch attention network for person re-identification to enhance the performance of the model. Our extensive experiments on the benchmark Market-1501, DukeMTMC-reID, CUHK03 and MSMT17 person re-identification datasets demonstrate that the performance of our method is comparable to that of state-of-the-art approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2020.3043026