RAPT360: Reinforcement Learning-Based Rate Adaptation for 360-Degree Video Streaming With Adaptive Prediction and Tiling

Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tile...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 3; pp. 1607 - 1623
Main Authors Kan, Nuowen, Zou, Junni, Li, Chenglin, Dai, Wenrui, Xiong, Hongkai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tiles. In this paper, we propose a strategy that deploys reinforcement learning-based Rate Adaptation with adaptive Prediction and Tiling for 360-degree video streaming, named RAPT360, to address these challenges. Specifically, to improve the accuracy of the state-of-the-art viewport prediction approaches, we fit the time-varying Laplace distribution-based probability density function of the prediction error for different prediction lengths. On the basis of that, we develop a viewport identification method to determine the viewport area of a user depending on the buffer occupancy, where the obtained viewport can cover the real viewport with any given probability confidence level. We then propose a viewport-aware adaptive tiling scheme to improve the bandwidth efficiency, where three types of tile granularities are allocated according to the shape and position of the 2-D projection of that viewport. By establishing an adaptive streaming model and QoE metric specific to 360-degree videos, we finally formulate the rate adaptation problem for tile-based 360-degree video streaming as a non-linear discrete optimization problem that targets at maximizing the long-term user QoE under a bandwidth-constrained network. To efficiently solve this problem, we model the rate adaptation logic as a Markov decision process (MDP) and employ the deep reinforcement learning (DRL)-based algorithm to dynamically learn the optimal bitrate allocation of tiles. Extensive experimental results show that RAPT360 achieves a performance gain of at least 1.47 dB on average chunk QoE, including a video quality improvement of at least 1.33 dB, in comparison to the existing strategies for tile-based adaptive 360-degree video streaming.
AbstractList Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tiles. In this paper, we propose a strategy that deploys reinforcement learning-based Rate Adaptation with adaptive Prediction and Tiling for 360-degree video streaming, named RAPT360, to address these challenges. Specifically, to improve the accuracy of the state-of-the-art viewport prediction approaches, we fit the time-varying Laplace distribution-based probability density function of the prediction error for different prediction lengths. On the basis of that, we develop a viewport identification method to determine the viewport area of a user depending on the buffer occupancy, where the obtained viewport can cover the real viewport with any given probability confidence level. We then propose a viewport-aware adaptive tiling scheme to improve the bandwidth efficiency, where three types of tile granularities are allocated according to the shape and position of the 2-D projection of that viewport. By establishing an adaptive streaming model and QoE metric specific to 360-degree videos, we finally formulate the rate adaptation problem for tile-based 360-degree video streaming as a non-linear discrete optimization problem that targets at maximizing the long-term user QoE under a bandwidth-constrained network. To efficiently solve this problem, we model the rate adaptation logic as a Markov decision process (MDP) and employ the deep reinforcement learning (DRL)-based algorithm to dynamically learn the optimal bitrate allocation of tiles. Extensive experimental results show that RAPT360 achieves a performance gain of at least 1.47 dB on average chunk QoE, including a video quality improvement of at least 1.33 dB, in comparison to the existing strategies for tile-based adaptive 360-degree video streaming.
Author Kan, Nuowen
Zou, Junni
Xiong, Hongkai
Dai, Wenrui
Li, Chenglin
Author_xml – sequence: 1
  givenname: Nuowen
  orcidid: 0000-0002-6028-1284
  surname: Kan
  fullname: Kan, Nuowen
  email: kannw_1230@sjtu.edu.cn
  organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Junni
  orcidid: 0000-0002-9694-9880
  surname: Zou
  fullname: Zou, Junni
  email: zoujunni@sjtu.edu.cn
  organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Chenglin
  orcidid: 0000-0003-2888-594X
  surname: Li
  fullname: Li, Chenglin
  email: lcl1985@sjtu.edu.cn
  organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Wenrui
  orcidid: 0000-0003-2522-5778
  surname: Dai
  fullname: Dai, Wenrui
  email: daiwenrui@sjtu.edu.cn
  organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Hongkai
  orcidid: 0000-0003-4552-0029
  surname: Xiong
  fullname: Xiong, Hongkai
  email: xionghongkai@sjtu.edu.cn
  organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kE1PwjAYxxujiYB-Ab008Txsu3VrvSG-JiQSmHhcSvcMS6DDrhj99hZGPHgwPTw9_H7Py7-Ljm1tAaELSvqUEnmdD6ezvM8Io_2YZCkX_Ah1KOciYozw4_AnnEaCUX6Kuk2zJIQmIsk66GsyGOdxSm7wBIytaqdhDdbjEShnjV1Et6qBEk-UBzwo1cYrb2qLA4iDFd3BwgHgmSmhxlPvQK2DhN-Mf29x8wl47KA0eu8pW-LcrAJzhk4qtWrg_FB76PXhPh8-RaOXx-fhYBRpJrmP2JyHRSVPJE0zKTXNVAwVBcISobRQVVqWgZBAOdHVvMriVIvw5mwuszQWcQ9dtX03rv7YQuOLZb11NowsWBpnSUJIkgVKtJR2ddM4qApt2lO9U2ZVUFLsci72ORe7nItDzkFlf9SNM2vlvv-XLlvJAMCvIBMqSUrjHwDTiks
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110618
crossref_primary_10_1109_TMM_2024_3379907
crossref_primary_10_1109_TWC_2024_3513221
crossref_primary_10_1145_3721292
crossref_primary_10_1109_TMC_2024_3443200
crossref_primary_10_1109_TNSE_2023_3257403
crossref_primary_10_1109_TCSVT_2023_3277893
crossref_primary_10_3390_electronics11233968
crossref_primary_10_1016_j_dcan_2025_03_007
crossref_primary_10_1109_LCOMM_2024_3370915
crossref_primary_10_1109_TNET_2024_3485583
crossref_primary_10_1109_TVT_2022_3219496
crossref_primary_10_3390_electronics13030649
crossref_primary_10_1109_TCSVT_2024_3419910
crossref_primary_10_1109_TMC_2024_3452510
crossref_primary_10_1109_TCSVT_2021_3096752
crossref_primary_10_1109_TMM_2024_3382910
crossref_primary_10_1109_TMC_2024_3487175
crossref_primary_10_1109_TIP_2022_3228521
crossref_primary_10_3390_s22030819
crossref_primary_10_1109_TCSVT_2024_3407685
crossref_primary_10_1109_TMC_2022_3194101
crossref_primary_10_1016_j_comnet_2022_109433
crossref_primary_10_1109_TBC_2023_3254165
crossref_primary_10_3390_s23084016
crossref_primary_10_1109_JIOT_2023_3287187
crossref_primary_10_3390_app12157581
crossref_primary_10_1109_TBC_2024_3374066
crossref_primary_10_1016_j_comcom_2024_108011
crossref_primary_10_1145_3708347
crossref_primary_10_1109_ACCESS_2022_3157339
crossref_primary_10_15622_ia_24_1_11
crossref_primary_10_1109_TBC_2024_3374119
crossref_primary_10_1109_JIOT_2024_3398548
crossref_primary_10_1109_JIOT_2024_3357133
crossref_primary_10_1007_s00530_023_01167_x
crossref_primary_10_25046_aj090305
crossref_primary_10_11834_jig_230025
Cites_doi 10.1109/ISM.2016.0028
10.1145/2829988.2787486
10.1007/s11042-016-4097-4
10.1109/TCSVT.2020.2980587
10.1109/TCSVT.2018.2880492
10.1109/3DTV.2017.8280417
10.1109/MMSP.2017.8122230
10.1145/2910017.2910606
10.1109/BigData.2016.7840720
10.1145/3123266.3123372
10.1109/TCSVT.2020.3046242
10.1109/LCOMM.2016.2601087
10.1109/INFOCOM.2019.8737361
10.1109/TCSVT.2019.2927344
10.1145/2043164.2018478
10.1109/TCSVT.2018.2886805
10.1145/3123266.3123339
10.1109/TPAMI.2018.2858783
10.1109/ICME.2019.00058
10.1145/3241539.3241565
10.1145/3123266.3123291
10.1145/3098822.3098843
10.1109/JSTSP.2019.2956716
10.1109/TCCN.2017.2755007
10.1109/SAHCN.2017.7964928
10.1109/ICASSP.2019.8683779
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3076585
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1623
ExternalDocumentID 10_1109_TCSVT_2021_3076585
9419061
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61931023; 61831018; 61871267; 61972256; 91838303; 61971285; 61720106001; 61932022
  funderid: 10.13039/501100001809
– fundername: Program of Shanghai Science and Technology Innovation Project
  grantid: 20511100100
– fundername: Shanghai Rising-Star Program
  grantid: 20QA1404600
  funderid: 10.13039/501100013105
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-2b5484954916799c17a3ef1e0248ac8af6dd5489e150cfbf736c8c8cb2b976383
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 14:27:54 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Wed Aug 27 02:49:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-2b5484954916799c17a3ef1e0248ac8af6dd5489e150cfbf736c8c8cb2b976383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2522-5778
0000-0003-2888-594X
0000-0003-4552-0029
0000-0002-6028-1284
0000-0002-9694-9880
PQID 2637440047
PQPubID 85433
PageCount 17
ParticipantIDs proquest_journals_2637440047
ieee_primary_9419061
crossref_citationtrail_10_1109_TCSVT_2021_3076585
crossref_primary_10_1109_TCSVT_2021_3076585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
Johannes Ballã (ref35)
ref14
ref36
ref11
ref33
ref10
Sutton (ref28) 2018
ref32
(ref29) 2018
ref2
ref17
ref16
(ref24) 2019
ref19
ref18
(ref31) 2018
Westphal (ref15)
Mavlankar (ref13)
ref23
ref26
ref25
ref20
ref22
ref21
(ref1) 2019
(ref30) 2018
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Mnih (ref27)
References_xml – ident: ref3
  doi: 10.1109/ISM.2016.0028
– ident: ref34
  doi: 10.1145/2829988.2787486
– start-page: 1928
  volume-title: Proc. ICML
  ident: ref27
  article-title: Asynchronous methods for deep reinforcement learning
– ident: ref25
  doi: 10.1007/s11042-016-4097-4
– ident: ref20
  doi: 10.1109/TCSVT.2020.2980587
– ident: ref36
  doi: 10.1109/TCSVT.2018.2880492
– volume-title: SJTU 8K 360-Degree Video Sequences
  year: 2018
  ident: ref30
– ident: ref33
  doi: 10.1109/3DTV.2017.8280417
– ident: ref11
  doi: 10.1109/MMSP.2017.8122230
– volume-title: GPAC Support for HEIF
  year: 2018
  ident: ref31
– ident: ref4
  doi: 10.1145/2910017.2910606
– volume-title: 360-Degree Camera Market Analysis—Global Forecast by 2018-2024
  year: 2019
  ident: ref1
– ident: ref5
  doi: 10.1109/BigData.2016.7840720
– ident: ref10
  doi: 10.1145/3123266.3123372
– ident: ref17
  doi: 10.1109/TCSVT.2020.3046242
– volume-title: Omnidirectional Media Format
  year: 2019
  ident: ref24
– ident: ref32
  doi: 10.1109/LCOMM.2016.2601087
– ident: ref22
  doi: 10.1109/INFOCOM.2019.8737361
– volume-title: Kvazaar
  year: 2018
  ident: ref29
– ident: ref2
  doi: 10.1109/TCSVT.2019.2927344
– ident: ref26
  doi: 10.1145/2043164.2018478
– ident: ref12
  doi: 10.1109/TCSVT.2018.2886805
– ident: ref14
  doi: 10.1145/3123266.3123339
– start-page: 1275
  volume-title: Proc. EUSIPCO
  ident: ref13
  article-title: Optimal slice size for streaming regions of high resolution video with virtual pan/tilt/zoom functionality
– start-page: 1
  volume-title: Proc. ICNC
  ident: ref15
  article-title: Challenges in networking to support augmented reality and virtual reality
– ident: ref7
  doi: 10.1109/TPAMI.2018.2858783
– ident: ref21
  doi: 10.1109/ICME.2019.00058
– ident: ref8
  doi: 10.1145/3241539.3241565
– ident: ref6
  doi: 10.1145/3123266.3123291
– ident: ref19
  doi: 10.1145/3098822.3098843
– ident: ref9
  doi: 10.1109/JSTSP.2019.2956716
– ident: ref18
  doi: 10.1109/TCCN.2017.2755007
– volume-title: Introduction to Reinforcement Learning
  year: 2018
  ident: ref28
– ident: ref16
  doi: 10.1109/SAHCN.2017.7964928
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref35
  article-title: Variational image compression with a scale hyperprior
– ident: ref23
  doi: 10.1109/ICASSP.2019.8683779
SSID ssj0014847
Score 2.5637693
Snippet Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1607
SubjectTerms 360-degree videos
Adaptation
Adaptation models
Adaptive systems
adaptive viewport prediction
Algorithms
Bandwidth
Bit rate
Confidence intervals
Deep learning
deep reinforcement learning
Forecasting
Identification methods
Machine learning
Markov processes
Occupancy
Optimization
Prediction algorithms
Probability density functions
Quality of experience
rate adaptation
Statistical analysis
Streaming media
tile-based adaptive streaming
Tiles
Tiling
Two dimensional models
Video transmission
viewport-aware tiling
Title RAPT360: Reinforcement Learning-Based Rate Adaptation for 360-Degree Video Streaming With Adaptive Prediction and Tiling
URI https://ieeexplore.ieee.org/document/9419061
https://www.proquest.com/docview/2637440047
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG-QJ33wC40omj74poWt6758Q5QQEwzBgbwta9cqUYHgSIx_vdduEL9i3F72cJc0uVvvfr3e7xA6dYTv0kB5gE0UJYwzRTgETsIZRCMHcljLjE7o3nqdAbsZuaMSOl_1wkgpzeUzWdefppafTsVCH5U1QgbhS2OdNQBuea_WqmLAAjNMDNIFmwQQx5YNMlbYiFp3wwigILXr4NEQct0vQchMVfmxFZv40t5C3eXK8mslT_VFxuvi_Rtp43-Xvo02i0QTN3PP2EElOdlFG5_oByvord_sRY5nXeC-NASqwpwV4oJz9YFcQohLcR_SUdxMk1letccgiEGLXEnA6hIPx6mcYl3dTl5ACd-Ps8dcHDZS3JvrSpDRSyYpjsa6_X0PDdrXUatDikkMRNDQzQjlAGyYrgjqqk0obD9xpLKlJkRLRJAoL01BIpSQXgrFle94IoCXUw7pDoDgfVSeTCfyAOGEUUCQCmClrZjruknqKMd3QRIeJkQV2UvTxKKgKdfTMp5jA1esMDbmjLU548KcVXS20pnlJB1_Sle0fVaShWmqqLb0gLj4j19j6jmaQdFi_uHvWkdoneqGCHMrrYbK2XwhjyFNyfiJ8c8PcAThQQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qZQEseBVEoMAsYIUmtcdjO0ZiEVqqlD5UBbd053rGMyVqSarUEY9v4Vf4N86MnYiX2FXC3nhxryXbZ-bc6_siehbpNBY9m8A3sYJLJS1XIE6uJNgogg0b-NEJu3vJ4EC-PYqPlujbohbGGOOTz0zXXfpYfjXRM_erbC2ToK8kbFMot82XT3DQLl5tbeBrPhdi802-PuDtDAGuRRbXXCiY5NLFsly8IdNhWkbGhsa18ip1r7RJVUEiMzCMtFU2jRLdw6mEAlHDfcN9r9BV2BmxaKrDFjEK3NePbgGseQ_MOS_JCbK1fP3dYQ7nU4RdrCGQfPwL7fk5Ln9s_p7RNm_R9_m7aBJZTruzWnX119_aRP6vL-s23WxNadZvsH-Hlsz4Lt34qcHiCn0e9vfzKAlesqHxLWK1_xvK2q6yJ_w1SLxiQxjcrF-V501eAoMggxbfMCdTY9jhqDIT5uL35Ucosfej-kMjDqpg-1MX6_J65bhi-cgV-N-jg0t59Pu0PJ6MzQNipRTwkS0c59ACNnFZRTZKY0jikFp3KJxDodBtI3Y3D-Ss8A5ZkBUePoWDT9HCp0MvFjrnTRuSf0qvODwsJFsodGh1jrii3akuCpFErkdkINOHf9d6StcG-e5OsbO1t_2IrgtX_uFz8FZpuZ7OzGMYZbV64tcGo-PLxtcPzG890w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAPT360%3A+Reinforcement+Learning-Based+Rate+Adaptation+for+360-Degree+Video+Streaming+With+Adaptive+Prediction+and+Tiling&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Kan%2C+Nuowen&rft.au=Zou%2C+Junni&rft.au=Li%2C+Chenglin&rft.au=Dai%2C+Wenrui&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=3&rft.spage=1607&rft_id=info:doi/10.1109%2FTCSVT.2021.3076585&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon