RAPT360: Reinforcement Learning-Based Rate Adaptation for 360-Degree Video Streaming With Adaptive Prediction and Tiling
Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tile...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 3; pp. 1607 - 1623 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tiles. In this paper, we propose a strategy that deploys reinforcement learning-based Rate Adaptation with adaptive Prediction and Tiling for 360-degree video streaming, named RAPT360, to address these challenges. Specifically, to improve the accuracy of the state-of-the-art viewport prediction approaches, we fit the time-varying Laplace distribution-based probability density function of the prediction error for different prediction lengths. On the basis of that, we develop a viewport identification method to determine the viewport area of a user depending on the buffer occupancy, where the obtained viewport can cover the real viewport with any given probability confidence level. We then propose a viewport-aware adaptive tiling scheme to improve the bandwidth efficiency, where three types of tile granularities are allocated according to the shape and position of the 2-D projection of that viewport. By establishing an adaptive streaming model and QoE metric specific to 360-degree videos, we finally formulate the rate adaptation problem for tile-based 360-degree video streaming as a non-linear discrete optimization problem that targets at maximizing the long-term user QoE under a bandwidth-constrained network. To efficiently solve this problem, we model the rate adaptation logic as a Markov decision process (MDP) and employ the deep reinforcement learning (DRL)-based algorithm to dynamically learn the optimal bitrate allocation of tiles. Extensive experimental results show that RAPT360 achieves a performance gain of at least 1.47 dB on average chunk QoE, including a video quality improvement of at least 1.33 dB, in comparison to the existing strategies for tile-based adaptive 360-degree video streaming. |
---|---|
AbstractList | Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tiles. In this paper, we propose a strategy that deploys reinforcement learning-based Rate Adaptation with adaptive Prediction and Tiling for 360-degree video streaming, named RAPT360, to address these challenges. Specifically, to improve the accuracy of the state-of-the-art viewport prediction approaches, we fit the time-varying Laplace distribution-based probability density function of the prediction error for different prediction lengths. On the basis of that, we develop a viewport identification method to determine the viewport area of a user depending on the buffer occupancy, where the obtained viewport can cover the real viewport with any given probability confidence level. We then propose a viewport-aware adaptive tiling scheme to improve the bandwidth efficiency, where three types of tile granularities are allocated according to the shape and position of the 2-D projection of that viewport. By establishing an adaptive streaming model and QoE metric specific to 360-degree videos, we finally formulate the rate adaptation problem for tile-based 360-degree video streaming as a non-linear discrete optimization problem that targets at maximizing the long-term user QoE under a bandwidth-constrained network. To efficiently solve this problem, we model the rate adaptation logic as a Markov decision process (MDP) and employ the deep reinforcement learning (DRL)-based algorithm to dynamically learn the optimal bitrate allocation of tiles. Extensive experimental results show that RAPT360 achieves a performance gain of at least 1.47 dB on average chunk QoE, including a video quality improvement of at least 1.33 dB, in comparison to the existing strategies for tile-based adaptive 360-degree video streaming. |
Author | Kan, Nuowen Zou, Junni Xiong, Hongkai Dai, Wenrui Li, Chenglin |
Author_xml | – sequence: 1 givenname: Nuowen orcidid: 0000-0002-6028-1284 surname: Kan fullname: Kan, Nuowen email: kannw_1230@sjtu.edu.cn organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Junni orcidid: 0000-0002-9694-9880 surname: Zou fullname: Zou, Junni email: zoujunni@sjtu.edu.cn organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Chenglin orcidid: 0000-0003-2888-594X surname: Li fullname: Li, Chenglin email: lcl1985@sjtu.edu.cn organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Wenrui orcidid: 0000-0003-2522-5778 surname: Dai fullname: Dai, Wenrui email: daiwenrui@sjtu.edu.cn organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Hongkai orcidid: 0000-0003-4552-0029 surname: Xiong fullname: Xiong, Hongkai email: xionghongkai@sjtu.edu.cn organization: Institute of Media Information and Network (MIN), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China |
BookMark | eNp9kE1PwjAYxxujiYB-Ab008Txsu3VrvSG-JiQSmHhcSvcMS6DDrhj99hZGPHgwPTw9_H7Py7-Ljm1tAaELSvqUEnmdD6ezvM8Io_2YZCkX_Ah1KOciYozw4_AnnEaCUX6Kuk2zJIQmIsk66GsyGOdxSm7wBIytaqdhDdbjEShnjV1Et6qBEk-UBzwo1cYrb2qLA4iDFd3BwgHgmSmhxlPvQK2DhN-Mf29x8wl47KA0eu8pW-LcrAJzhk4qtWrg_FB76PXhPh8-RaOXx-fhYBRpJrmP2JyHRSVPJE0zKTXNVAwVBcISobRQVVqWgZBAOdHVvMriVIvw5mwuszQWcQ9dtX03rv7YQuOLZb11NowsWBpnSUJIkgVKtJR2ddM4qApt2lO9U2ZVUFLsci72ORe7nItDzkFlf9SNM2vlvv-XLlvJAMCvIBMqSUrjHwDTiks |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1016_j_comnet_2024_110618 crossref_primary_10_1109_TMM_2024_3379907 crossref_primary_10_1109_TWC_2024_3513221 crossref_primary_10_1145_3721292 crossref_primary_10_1109_TMC_2024_3443200 crossref_primary_10_1109_TNSE_2023_3257403 crossref_primary_10_1109_TCSVT_2023_3277893 crossref_primary_10_3390_electronics11233968 crossref_primary_10_1016_j_dcan_2025_03_007 crossref_primary_10_1109_LCOMM_2024_3370915 crossref_primary_10_1109_TNET_2024_3485583 crossref_primary_10_1109_TVT_2022_3219496 crossref_primary_10_3390_electronics13030649 crossref_primary_10_1109_TCSVT_2024_3419910 crossref_primary_10_1109_TMC_2024_3452510 crossref_primary_10_1109_TCSVT_2021_3096752 crossref_primary_10_1109_TMM_2024_3382910 crossref_primary_10_1109_TMC_2024_3487175 crossref_primary_10_1109_TIP_2022_3228521 crossref_primary_10_3390_s22030819 crossref_primary_10_1109_TCSVT_2024_3407685 crossref_primary_10_1109_TMC_2022_3194101 crossref_primary_10_1016_j_comnet_2022_109433 crossref_primary_10_1109_TBC_2023_3254165 crossref_primary_10_3390_s23084016 crossref_primary_10_1109_JIOT_2023_3287187 crossref_primary_10_3390_app12157581 crossref_primary_10_1109_TBC_2024_3374066 crossref_primary_10_1016_j_comcom_2024_108011 crossref_primary_10_1145_3708347 crossref_primary_10_1109_ACCESS_2022_3157339 crossref_primary_10_15622_ia_24_1_11 crossref_primary_10_1109_TBC_2024_3374119 crossref_primary_10_1109_JIOT_2024_3398548 crossref_primary_10_1109_JIOT_2024_3357133 crossref_primary_10_1007_s00530_023_01167_x crossref_primary_10_25046_aj090305 crossref_primary_10_11834_jig_230025 |
Cites_doi | 10.1109/ISM.2016.0028 10.1145/2829988.2787486 10.1007/s11042-016-4097-4 10.1109/TCSVT.2020.2980587 10.1109/TCSVT.2018.2880492 10.1109/3DTV.2017.8280417 10.1109/MMSP.2017.8122230 10.1145/2910017.2910606 10.1109/BigData.2016.7840720 10.1145/3123266.3123372 10.1109/TCSVT.2020.3046242 10.1109/LCOMM.2016.2601087 10.1109/INFOCOM.2019.8737361 10.1109/TCSVT.2019.2927344 10.1145/2043164.2018478 10.1109/TCSVT.2018.2886805 10.1145/3123266.3123339 10.1109/TPAMI.2018.2858783 10.1109/ICME.2019.00058 10.1145/3241539.3241565 10.1145/3123266.3123291 10.1145/3098822.3098843 10.1109/JSTSP.2019.2956716 10.1109/TCCN.2017.2755007 10.1109/SAHCN.2017.7964928 10.1109/ICASSP.2019.8683779 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3076585 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1623 |
ExternalDocumentID | 10_1109_TCSVT_2021_3076585 9419061 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61931023; 61831018; 61871267; 61972256; 91838303; 61971285; 61720106001; 61932022 funderid: 10.13039/501100001809 – fundername: Program of Shanghai Science and Technology Innovation Project grantid: 20511100100 – fundername: Shanghai Rising-Star Program grantid: 20QA1404600 funderid: 10.13039/501100013105 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-2b5484954916799c17a3ef1e0248ac8af6dd5489e150cfbf736c8c8cb2b976383 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 14:27:54 EDT 2025 Tue Jul 01 00:41:15 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Wed Aug 27 02:49:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-2b5484954916799c17a3ef1e0248ac8af6dd5489e150cfbf736c8c8cb2b976383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2522-5778 0000-0003-2888-594X 0000-0003-4552-0029 0000-0002-6028-1284 0000-0002-9694-9880 |
PQID | 2637440047 |
PQPubID | 85433 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2637440047 ieee_primary_9419061 crossref_citationtrail_10_1109_TCSVT_2021_3076585 crossref_primary_10_1109_TCSVT_2021_3076585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref34 Johannes Ballã (ref35) ref14 ref36 ref11 ref33 ref10 Sutton (ref28) 2018 ref32 (ref29) 2018 ref2 ref17 ref16 (ref24) 2019 ref19 ref18 (ref31) 2018 Westphal (ref15) Mavlankar (ref13) ref23 ref26 ref25 ref20 ref22 ref21 (ref1) 2019 (ref30) 2018 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Mnih (ref27) |
References_xml | – ident: ref3 doi: 10.1109/ISM.2016.0028 – ident: ref34 doi: 10.1145/2829988.2787486 – start-page: 1928 volume-title: Proc. ICML ident: ref27 article-title: Asynchronous methods for deep reinforcement learning – ident: ref25 doi: 10.1007/s11042-016-4097-4 – ident: ref20 doi: 10.1109/TCSVT.2020.2980587 – ident: ref36 doi: 10.1109/TCSVT.2018.2880492 – volume-title: SJTU 8K 360-Degree Video Sequences year: 2018 ident: ref30 – ident: ref33 doi: 10.1109/3DTV.2017.8280417 – ident: ref11 doi: 10.1109/MMSP.2017.8122230 – volume-title: GPAC Support for HEIF year: 2018 ident: ref31 – ident: ref4 doi: 10.1145/2910017.2910606 – volume-title: 360-Degree Camera Market Analysis—Global Forecast by 2018-2024 year: 2019 ident: ref1 – ident: ref5 doi: 10.1109/BigData.2016.7840720 – ident: ref10 doi: 10.1145/3123266.3123372 – ident: ref17 doi: 10.1109/TCSVT.2020.3046242 – volume-title: Omnidirectional Media Format year: 2019 ident: ref24 – ident: ref32 doi: 10.1109/LCOMM.2016.2601087 – ident: ref22 doi: 10.1109/INFOCOM.2019.8737361 – volume-title: Kvazaar year: 2018 ident: ref29 – ident: ref2 doi: 10.1109/TCSVT.2019.2927344 – ident: ref26 doi: 10.1145/2043164.2018478 – ident: ref12 doi: 10.1109/TCSVT.2018.2886805 – ident: ref14 doi: 10.1145/3123266.3123339 – start-page: 1275 volume-title: Proc. EUSIPCO ident: ref13 article-title: Optimal slice size for streaming regions of high resolution video with virtual pan/tilt/zoom functionality – start-page: 1 volume-title: Proc. ICNC ident: ref15 article-title: Challenges in networking to support augmented reality and virtual reality – ident: ref7 doi: 10.1109/TPAMI.2018.2858783 – ident: ref21 doi: 10.1109/ICME.2019.00058 – ident: ref8 doi: 10.1145/3241539.3241565 – ident: ref6 doi: 10.1145/3123266.3123291 – ident: ref19 doi: 10.1145/3098822.3098843 – ident: ref9 doi: 10.1109/JSTSP.2019.2956716 – ident: ref18 doi: 10.1109/TCCN.2017.2755007 – volume-title: Introduction to Reinforcement Learning year: 2018 ident: ref28 – ident: ref16 doi: 10.1109/SAHCN.2017.7964928 – start-page: 1 volume-title: Proc. ICLR ident: ref35 article-title: Variational image compression with a scale hyperprior – ident: ref23 doi: 10.1109/ICASSP.2019.8683779 |
SSID | ssj0014847 |
Score | 2.5637693 |
Snippet | Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1607 |
SubjectTerms | 360-degree videos Adaptation Adaptation models Adaptive systems adaptive viewport prediction Algorithms Bandwidth Bit rate Confidence intervals Deep learning deep reinforcement learning Forecasting Identification methods Machine learning Markov processes Occupancy Optimization Prediction algorithms Probability density functions Quality of experience rate adaptation Statistical analysis Streaming media tile-based adaptive streaming Tiles Tiling Two dimensional models Video transmission viewport-aware tiling |
Title | RAPT360: Reinforcement Learning-Based Rate Adaptation for 360-Degree Video Streaming With Adaptive Prediction and Tiling |
URI | https://ieeexplore.ieee.org/document/9419061 https://www.proquest.com/docview/2637440047 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG-QJ33wC40omj74poWt6758Q5QQEwzBgbwta9cqUYHgSIx_vdduEL9i3F72cJc0uVvvfr3e7xA6dYTv0kB5gE0UJYwzRTgETsIZRCMHcljLjE7o3nqdAbsZuaMSOl_1wkgpzeUzWdefppafTsVCH5U1QgbhS2OdNQBuea_WqmLAAjNMDNIFmwQQx5YNMlbYiFp3wwigILXr4NEQct0vQchMVfmxFZv40t5C3eXK8mslT_VFxuvi_Rtp43-Xvo02i0QTN3PP2EElOdlFG5_oByvord_sRY5nXeC-NASqwpwV4oJz9YFcQohLcR_SUdxMk1letccgiEGLXEnA6hIPx6mcYl3dTl5ACd-Ps8dcHDZS3JvrSpDRSyYpjsa6_X0PDdrXUatDikkMRNDQzQjlAGyYrgjqqk0obD9xpLKlJkRLRJAoL01BIpSQXgrFle94IoCXUw7pDoDgfVSeTCfyAOGEUUCQCmClrZjruknqKMd3QRIeJkQV2UvTxKKgKdfTMp5jA1esMDbmjLU548KcVXS20pnlJB1_Sle0fVaShWmqqLb0gLj4j19j6jmaQdFi_uHvWkdoneqGCHMrrYbK2XwhjyFNyfiJ8c8PcAThQQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qZQEseBVEoMAsYIUmtcdjO0ZiEVqqlD5UBbd053rGMyVqSarUEY9v4Vf4N86MnYiX2FXC3nhxryXbZ-bc6_siehbpNBY9m8A3sYJLJS1XIE6uJNgogg0b-NEJu3vJ4EC-PYqPlujbohbGGOOTz0zXXfpYfjXRM_erbC2ToK8kbFMot82XT3DQLl5tbeBrPhdi802-PuDtDAGuRRbXXCiY5NLFsly8IdNhWkbGhsa18ip1r7RJVUEiMzCMtFU2jRLdw6mEAlHDfcN9r9BV2BmxaKrDFjEK3NePbgGseQ_MOS_JCbK1fP3dYQ7nU4RdrCGQfPwL7fk5Ln9s_p7RNm_R9_m7aBJZTruzWnX119_aRP6vL-s23WxNadZvsH-Hlsz4Lt34qcHiCn0e9vfzKAlesqHxLWK1_xvK2q6yJ_w1SLxiQxjcrF-V501eAoMggxbfMCdTY9jhqDIT5uL35Ucosfej-kMjDqpg-1MX6_J65bhi-cgV-N-jg0t59Pu0PJ6MzQNipRTwkS0c59ACNnFZRTZKY0jikFp3KJxDodBtI3Y3D-Ss8A5ZkBUePoWDT9HCp0MvFjrnTRuSf0qvODwsJFsodGh1jrii3akuCpFErkdkINOHf9d6StcG-e5OsbO1t_2IrgtX_uFz8FZpuZ7OzGMYZbV64tcGo-PLxtcPzG890w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAPT360%3A+Reinforcement+Learning-Based+Rate+Adaptation+for+360-Degree+Video+Streaming+With+Adaptive+Prediction+and+Tiling&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Kan%2C+Nuowen&rft.au=Zou%2C+Junni&rft.au=Li%2C+Chenglin&rft.au=Dai%2C+Wenrui&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=3&rft.spage=1607&rft_id=info:doi/10.1109%2FTCSVT.2021.3076585&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |