RAPT360: Reinforcement Learning-Based Rate Adaptation for 360-Degree Video Streaming With Adaptive Prediction and Tiling

Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tile...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 3; pp. 1607 - 1623
Main Authors Kan, Nuowen, Zou, Junni, Li, Chenglin, Dai, Wenrui, Xiong, Hongkai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tile-based rate adaption can improve the quality of experience (QoE) for adaptive 360-degree video streaming under constrained network conditions, which, however, is a challenging problem due to the requirements of accurate prediction for users' viewports and optimal bitrate allocation for tiles. In this paper, we propose a strategy that deploys reinforcement learning-based Rate Adaptation with adaptive Prediction and Tiling for 360-degree video streaming, named RAPT360, to address these challenges. Specifically, to improve the accuracy of the state-of-the-art viewport prediction approaches, we fit the time-varying Laplace distribution-based probability density function of the prediction error for different prediction lengths. On the basis of that, we develop a viewport identification method to determine the viewport area of a user depending on the buffer occupancy, where the obtained viewport can cover the real viewport with any given probability confidence level. We then propose a viewport-aware adaptive tiling scheme to improve the bandwidth efficiency, where three types of tile granularities are allocated according to the shape and position of the 2-D projection of that viewport. By establishing an adaptive streaming model and QoE metric specific to 360-degree videos, we finally formulate the rate adaptation problem for tile-based 360-degree video streaming as a non-linear discrete optimization problem that targets at maximizing the long-term user QoE under a bandwidth-constrained network. To efficiently solve this problem, we model the rate adaptation logic as a Markov decision process (MDP) and employ the deep reinforcement learning (DRL)-based algorithm to dynamically learn the optimal bitrate allocation of tiles. Extensive experimental results show that RAPT360 achieves a performance gain of at least 1.47 dB on average chunk QoE, including a video quality improvement of at least 1.33 dB, in comparison to the existing strategies for tile-based adaptive 360-degree video streaming.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2021.3076585