Effect of Moisture Content on Sunflower Seed Physical and Mechanical Properties
This study was carried out to measure some physical and mechanical properties of the sunflower seeds variety “DW667”. The physical properties (length, width, thickness, equivalent diameter, sphericity, surface area of seed, one thousand seed mass, bulk and true density, porosity) and mechanical prop...
Saved in:
Published in | International journal of engineering research in Africa (Print) Vol. 57; pp. 169 - 179 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Zurich
Trans Tech Publications Ltd
09.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study was carried out to measure some physical and mechanical properties of the sunflower seeds variety “DW667”. The physical properties (length, width, thickness, equivalent diameter, sphericity, surface area of seed, one thousand seed mass, bulk and true density, porosity) and mechanical properties (compressive load and displacement deformation for vertical and horizontal orientations) were measured at 4%, 10%, 15%, 20% and 25% Dray basis (d.b.) moisture contents. Higher moisture content from 4%to25% increased length, width, thickness, equivalent diameter, sphericity, surface area of seed, one thousand seed mass, bulk and true density, porosity and deformation displacement at the vertical and horizontal orientations of seeds increased from 10.57 to , 4.50 to , 2.85 to , 5.13 to , 49 to 50 %, 82.95 to 94.53 mm2, 33.70 to , 286.80 to 314.98 kg/m3, 406.47 to 483.61 kg/m3, 29.22 to 34.54 %, 1.63 to 2.63 mm and 0.70 to 1.87 mm, respectively. While the required compressive force for rupture seeds decreased from 25.3 to 12.39 N and 11.5 to 5.63 N for vertical and horizontal orientations, respectively with moisture contents uprising from 4 to 25 %. The findings of this study will open new windows in farm mechanization for the designing and improvement of treatment machines for this type of seed. |
---|---|
ISSN: | 1663-3571 1663-4144 1663-4144 |
DOI: | 10.4028/www.scientific.net/JERA.57.169 |