A Bi-Hemisphere Domain Adversarial Neural Network Model for EEG Emotion Recognition
In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are...
Saved in:
Published in | IEEE transactions on affective computing Vol. 12; no. 2; pp. 494 - 504 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are asymmetric to the emotional response. It contains a global and two local domain discriminators that work adversarially with a classifier to learn discriminative emotional features for each hemisphere. At the same time, it tries to reduce the possible domain differences in each hemisphere between the source and target domains so as to improve the generality of the recognition model. In addition, we also propose an improved version of BiDANN, denoted by BiDANN-S, for subject-independent EEG emotion recognition problem by lowering the influences of the personal information of subjects to the EEG emotion recognition. Extensive experiments on the SEED database are conducted to evaluate the performance of both BiDANN and BiDANN-S. The experimental results have shown that the proposed BiDANN and BiDANN models achieve state-of-the-art performance in the EEG emotion recognition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1949-3045 1949-3045 |
DOI: | 10.1109/TAFFC.2018.2885474 |