Blind Image Quality Assessment Using a Deep Bilinear Convolutional Neural Network
We propose a deep bilinear model for blind image quality assessment that works for both synthetically and authentically distorted images. Our model constitutes two streams of deep convolutional neural networks (CNNs), specializing in two distortion scenarios separately. For synthetic distortions, we...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 30; no. 1; pp. 36 - 47 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a deep bilinear model for blind image quality assessment that works for both synthetically and authentically distorted images. Our model constitutes two streams of deep convolutional neural networks (CNNs), specializing in two distortion scenarios separately. For synthetic distortions, we first pre-train a CNN to classify the distortion type and the level of an input image, whose ground truth label is readily available at a large scale. For authentic distortions, we make use of a pre-train CNN (VGG-16) for the image classification task. The two feature sets are bilinearly pooled into one representation for a final quality prediction. We fine-tune the whole network on the target databases using a variant of stochastic gradient descent. The extensive experimental results show that the proposed model achieves state-of-the-art performance on both synthetic and authentic IQA databases. Furthermore, we verify the generalizability of our method on the large-scale Waterloo Exploration Database, and demonstrate its competitiveness using the group maximum differentiation competition methodology. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2018.2886771 |