Hybrid Quantum Well/Quantum Dot Structure for Broad Spectral Bandwidth Emitters

We report a hybrid quantum well (QW)/quantum dot active element for an application in broadband sources. These structures consist of an InGaAs QW and six InAs dot-in-well (DWELL) layers. The single QW is designed to emit at a wavelength coincident with the second excited state of the quantum dot. We...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 19; no. 4; p. 1900209
Main Authors Siming Chen, Kejia Zhou, Ziyang Zhang, Orchard, J. R., Childs, D. T. D., Hugues, M., Wada, O., Hogg, R. A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a hybrid quantum well (QW)/quantum dot active element for an application in broadband sources. These structures consist of an InGaAs QW and six InAs dot-in-well (DWELL) layers. The single QW is designed to emit at a wavelength coincident with the second excited state of the quantum dot. We compare two hybrid QW/quantum dot samples where the QW position is changed, and show that carrier transport effects make QW placement very important through current-voltage, capacitance-voltage, photocurrent, and temperature-dependent spontaneous emission measurements. Using the optimal structure, due to the combined effects of quantum dot ground states, first excited state, and QW emission, a positive modal gain spanning ~300 nm is achieved for the segmented contact device. The values for modal gain are further confirmed by simultaneous three-state lasing, which is studied spectroscopically. Finally, a hybrid QW/quantum dot superluminescent diode (SLD) is reported; the device exhibits a 3 dB emission spectrum of 213 nm, centered at 1230 nm with a corresponding output power of 1.1 mW. The hybrid SLD is then assessed for an application in an optical coherence tomography system; an axial resolution of ~4 μm is predicted.
AbstractList We report a hybrid quantum well (QW)/quantum dot active element for an application in broadband sources. These structures consist of an InGaAs QW and six InAs dot-in-well (DWELL) layers. The single QW is designed to emit at a wavelength coincident with the second excited state of the quantum dot. We compare two hybrid QW/quantum dot samples where the QW position is changed, and show that carrier transport effects make QW placement very important through current-voltage, capacitance-voltage, photocurrent, and temperature-dependent spontaneous emission measurements. Using the optimal structure, due to the combined effects of quantum dot ground states, first excited state, and QW emission, a positive modal gain spanning ~300 nm is achieved for the segmented contact device. The values for modal gain are further confirmed by simultaneous three-state lasing, which is studied spectroscopically. Finally, a hybrid QW/quantum dot superluminescent diode (SLD) is reported; the device exhibits a 3 dB emission spectrum of 213 nm, centered at 1230 nm with a corresponding output power of 1.1 mW. The hybrid SLD is then assessed for an application in an optical coherence tomography system; an axial resolution of ~4 μm is predicted.
We report a hybrid quantum well (QW)/quantum dot active element for an application in broadband sources. These structures consist of an InGaAs QW and six InAs dot-in-well (DWELL) layers. The single QW is designed to emit at a wavelength coincident with the second excited state of the quantum dot. We compare two hybrid QW/quantum dot samples where the QW position is changed, and show that carrier transport effects make QW placement very important through current-voltage, capacitance-voltage, photocurrent, and temperature-dependent spontaneous emission measurements. Using the optimal structure, due to the combined effects of quantum dot ground states, first excited state, and QW emission, a positive modal gain spanning ∼300 nm is achieved for the segmented contact device. The values for modal gain are further confirmed by simultaneous three-state lasing, which is studied spectroscopically. Finally, a hybrid QW/quantum dot superluminescent diode (SLD) is reported; the device exhibits a 3 dB emission spectrum of 213 nm, centered at 1230 nm with a corresponding output power of 1.1 mW. The hybrid SLD is then assessed for an application in an optical coherence tomography system; an axial resolution of ∼4 μm is predicted.
Author Siming Chen
Orchard, J. R.
Hogg, R. A.
Ziyang Zhang
Wada, O.
Hugues, M.
Kejia Zhou
Childs, D. T. D.
Author_xml – sequence: 1
  surname: Siming Chen
  fullname: Siming Chen
  email: siming.chen@sheffield.ac.uk
  organization: Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK
– sequence: 2
  surname: Kejia Zhou
  fullname: Kejia Zhou
  email: k.zhou@sheffield.ac.uk
  organization: Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK
– sequence: 3
  surname: Ziyang Zhang
  fullname: Ziyang Zhang
  email: ziyang.zhang@sheffield.ac.uk
  organization: Dept. of Electron., Univ. of Sheffield, Sheffield, UK
– sequence: 4
  givenname: J. R.
  surname: Orchard
  fullname: Orchard, J. R.
  email: j.orchard@sheffield.ac.uk
  organization: Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK
– sequence: 5
  givenname: D. T. D.
  surname: Childs
  fullname: Childs, D. T. D.
  email: david.childs@sheffield.ac.uk
  organization: Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK
– sequence: 6
  givenname: M.
  surname: Hugues
  fullname: Hugues, M.
  email: mh@crhea.cnrs.fr
  organization: Dept. of Electron., Univ. of Sheffield, Sheffield, UK
– sequence: 7
  givenname: O.
  surname: Wada
  fullname: Wada, O.
  email: o.wada@shef.ac.uk
  organization: Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK
– sequence: 8
  givenname: R. A.
  surname: Hogg
  fullname: Hogg, R. A.
  email: r.hogg@sheffield.ac.uk
  organization: Dept. of Electron., Univ. of Sheffield, Sheffield, UK
BookMark eNo9kNFOwjAUhhuDiYC-gN408Xpw2rVreymIoiEhBIzeNV3XxZGxYdfF8PYOQa_OOcn3_yf5BqhX1ZVD6JbAiBBQ49f1ZjUbUSB0RGnMieAXqE84lxHjjPa6HYSIaAIfV2jQNFsAkExCHy3nh9QXGV61pgrtDr-7shz_HY91wOvgWxta73Beezzxtcnweu9s8KbEE1Nl30UWPvFsV4TgfHONLnNTNu7mPIfo7Wm2mc6jxfL5ZfqwiCxVPEQEYk6JFIpnzAK3xBjDHEiaKClFroiRKQXOmBNJynKWyaTjGRcpZcamNh6i-1Pv3tdfrWuC3tatr7qXmnTVEhRnoqPoibK-bhrvcr33xc74gyagj-L0rzh9FKfP4rrQ3SlUOOf-A0msKFEi_gF1bmqE
CODEN IJSQEN
CitedBy_id crossref_primary_10_1063_1_5021774
crossref_primary_10_1186_s11671_015_1049_2
crossref_primary_10_1088_0022_3727_48_36_363001
crossref_primary_10_1049_el_2014_2414
crossref_primary_10_3390_nano12091431
crossref_primary_10_1088_1402_4896_ac33fc
crossref_primary_10_1364_OE_22_023242
crossref_primary_10_1364_OL_38_003720
crossref_primary_10_1117_1_JNP_12_026007
crossref_primary_10_1109_LPT_2014_2308973
crossref_primary_10_1021_ph500162a
crossref_primary_10_3390_photonics2020646
crossref_primary_10_1364_OE_23_032230
crossref_primary_10_1088_1674_1056_ac657f
crossref_primary_10_1364_OE_24_009673
crossref_primary_10_1063_1_4982160
crossref_primary_10_1007_s11082_017_1265_3
crossref_primary_10_1109_JPHOT_2014_2337892
crossref_primary_10_1088_1674_4926_41_1_012301
crossref_primary_10_1109_JSTQE_2017_2693025
crossref_primary_10_1364_AO_56_003599
Cites_doi 10.1049/el.2012.0710
10.1049/el:20056995
10.1023/A:1007030119338
10.1063/1.1478129
10.1364/AO.41.005256
10.1063/1.1776631
10.1109/LPT.2008.2004696
10.1063/1.1532549
10.1088/0957-0233/15/8/028
10.1364/OL.33.001210
10.1109/JQE.2006.876709
10.1063/1.125066
10.1088/0957-4484/20/5/055204
10.1063/1.123366
10.1117/12.908494
10.1049/el:19950214
10.1364/OL.37.001103
10.1063/1.2458515
10.1109/JQE.2007.907213
10.1109/JLT.1983.1072090
10.1063/1.1563742
10.1364/OPEX.12.002112
10.1063/1.119844
10.1063/1.3624708
10.1049/el.2010.1669
10.1088/0034-4885/66/2/204
10.1007/978-3-540-77550-8_35
10.1109/LPT.2008.921108
10.1063/1.2772845
10.1364/AOP.2.000201
10.1364/OE.11.001411
10.1038/86589
10.1063/1.3679178
10.1109/JLT.2004.834504
10.1109/LPT.2007.893567
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul/Aug 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul/Aug 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSTQE.2012.2235175
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-4542
EndPage 1900209
ExternalDocumentID 2973172381
10_1109_JSTQE_2012_2235175
6392197
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AFFNX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
VH1
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c295t-1035218795d4c05c1aaa4e08269887f91a8b20544e76b4f4d86521457b24acbc3
IEDL.DBID RIE
ISSN 1077-260X
IngestDate Thu Oct 10 20:39:20 EDT 2024
Fri Aug 23 03:53:03 EDT 2024
Wed Jun 26 19:27:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-1035218795d4c05c1aaa4e08269887f91a8b20544e76b4f4d86521457b24acbc3
PQID 1352809547
PQPubID 75740
PageCount 1
ParticipantIDs proquest_journals_1352809547
crossref_primary_10_1109_JSTQE_2012_2235175
ieee_primary_6392197
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in quantum electronics
PublicationTitleAbbrev JSTQE
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ackay (ref35) 2002; 41
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
welzel (ref6) 2008
(ref24) 0
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref31
  doi: 10.1049/el.2012.0710
– ident: ref11
  doi: 10.1049/el:20056995
– ident: ref10
  doi: 10.1023/A:1007030119338
– ident: ref22
  doi: 10.1063/1.1478129
– volume: 41
  start-page: 5256
  year: 2002
  ident: ref35
  article-title: Estimation of longitudinal resolution in optical coherence imaging
  publication-title: Appl Opt
  doi: 10.1364/AO.41.005256
  contributor:
    fullname: ackay
– ident: ref21
  doi: 10.1063/1.1776631
– ident: ref16
  doi: 10.1109/LPT.2008.2004696
– ident: ref28
  doi: 10.1063/1.1532549
– ident: ref8
  doi: 10.1088/0957-0233/15/8/028
– ident: ref12
  doi: 10.1364/OL.33.001210
– ident: ref26
  doi: 10.1109/JQE.2006.876709
– ident: ref25
  doi: 10.1063/1.125066
– ident: ref15
  doi: 10.1088/0957-4484/20/5/055204
– ident: ref34
  doi: 10.1063/1.123366
– ident: ref17
  doi: 10.1117/12.908494
– ident: ref9
  doi: 10.1049/el:19950214
– ident: ref19
  doi: 10.1364/OL.37.001103
– ident: ref18
  doi: 10.1063/1.2458515
– ident: ref27
  doi: 10.1109/JQE.2007.907213
– ident: ref1
  doi: 10.1109/JLT.1983.1072090
– ident: ref33
  doi: 10.1063/1.1563742
– ident: ref2
  doi: 10.1364/OPEX.12.002112
– ident: ref7
  doi: 10.1063/1.119844
– ident: ref29
  doi: 10.1063/1.3624708
– ident: ref32
  doi: 10.1049/el.2010.1669
– ident: ref4
  doi: 10.1088/0034-4885/66/2/204
– start-page: 1103
  year: 2008
  ident: ref6
  publication-title: Optical Coherence Tomography
  doi: 10.1007/978-3-540-77550-8_35
  contributor:
    fullname: welzel
– ident: ref14
  doi: 10.1109/LPT.2008.921108
– ident: ref23
  doi: 10.1063/1.2772845
– ident: ref20
  doi: 10.1364/AOP.2.000201
– year: 0
  ident: ref24
– ident: ref5
  doi: 10.1364/OE.11.001411
– ident: ref36
  doi: 10.1038/86589
– ident: ref30
  doi: 10.1063/1.3679178
– ident: ref3
  doi: 10.1109/JLT.2004.834504
– ident: ref13
  doi: 10.1109/LPT.2007.893567
SSID ssj0008480
Score 2.2345257
Snippet We report a hybrid quantum well (QW)/quantum dot active element for an application in broadband sources. These structures consist of an InGaAs QW and six InAs...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1900209
SubjectTerms Bandwidth
Broadband light source
carrier transport
hybrid quantum well (QW)/quantum dot (QD)
Indium gallium arsenide
optical coherence tomography (OCT)
Quantum dots
Spontaneous emission
superluminescent diode (SLD)
Superluminescent diodes
Temperature
Temperature measurement
Title Hybrid Quantum Well/Quantum Dot Structure for Broad Spectral Bandwidth Emitters
URI https://ieeexplore.ieee.org/document/6392197
https://www.proquest.com/docview/1352809547
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD44QdAHb1OcN_Lgm3Zbs6RpHr1MhqAiKu6tJGmKotvEtYj-ek_Sdoj64FsLDYRz_ZKe8x2AAxpGaS_sZYFJDQ2YiWigM2bRr4yIhFFcUteNfHkVDe7ZxZAP5-Bo1gtjrfXFZ7btHv2__HRiCndV1sFsig4mGtAQUpa9WrOoG7O4ZB4QIkCMPqwbZLqygyZ-03dVXLSNyZCHrqbwWxLyU1V-hWKfX85X4LLeWVlW8twuct02nz9IG_-79VVYroAmOS4tYw3m7Hgdlr7RD67Dgi__NNMmXA8-XOcWuSlQ0MWIPNiXl079cjbJya2nmS3eLEGQS_DsrlLiRte7exJyosbp-1OaP5L-6MnTdW7A_Xn_7nQQVKMWAkMlzzEYIxDzg8dTZrrchEopZhEeRBKjUCZDFWuK6I5ZEWmWsTSOuOM4F5oyZbTpbcL8eDK2W0B0jKgltj2ulGSGajyC6jhUNONUhZqbFhzWsk9eS0aNxJ9EujLxmkqcppJKUy1oOmHOvqzk2ILdWl1J5XTTJHRMNQgZmdj-e9UOLFI_zcJV2-7CPIrO7iGmyPW-N6YvjITHQA
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEHdkRZfeAGaRvXznJkKSpLQRUgeotsxxEVXRAkQvD1jJ2kqoADt0SKJWvWZ2fmDcAhdb244TYSR8WKOkx51JEJ0-hXyvd8JXhITTdy-9ZrPbKrLu9OwfG4F0ZrbYvPdNU82n_58Uhl5qqshtkUHcyfhlnE1YGXd2uN427Agpx7wPcdROndskWmHtbQyDtNU8dFq5gOuWuqCifSkJ2r8isY2wxzsQztcm95YclLNUtlVX39oG387-ZXYKmAmuQkt41VmNLDNVicICBcgzlbAKre1-Gu9Wl6t0gnQ1FnA_Kk-_1a-XI-Ssm9JZrN3jRBmEvw9C5iYobXm5sSciqG8UcvTp9Jc9CzhJ0b8HjRfDhrOcWwBUfRkKcYjhGK2dHjMVN1rlwhBNMIELwQ41ASuiKQFPEd074nWcLiwOOG5dyXlAklVWMTZoajod4CIgPELYFucCFCpqjEQ6gMXEETToUruarAUSn76DXn1IjsWaQeRlZTkdFUVGiqAutGmOMvCzlWYLdUV1S43XvkGq4aBI3M3_571QHMtx7aN9HN5e31DixQO9vC1N7uwgyKUe8hwkjlvjWsbyUzyos
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Quantum+Well%2FQuantum+Dot+Structure+for+Broad+Spectral+Bandwidth+Emitters&rft.jtitle=IEEE+journal+of+selected+topics+in+quantum+electronics&rft.au=Siming+Chen&rft.au=Kejia+Zhou&rft.au=Ziyang+Zhang&rft.au=Orchard%2C+J.+R.&rft.date=2013-07-01&rft.pub=IEEE&rft.issn=1077-260X&rft.eissn=1558-4542&rft.volume=19&rft.issue=4&rft.spage=1900209&rft.epage=1900209&rft_id=info:doi/10.1109%2FJSTQE.2012.2235175&rft.externalDocID=6392197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-260X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-260X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-260X&client=summon