Hybrid Quantum Well/Quantum Dot Structure for Broad Spectral Bandwidth Emitters
We report a hybrid quantum well (QW)/quantum dot active element for an application in broadband sources. These structures consist of an InGaAs QW and six InAs dot-in-well (DWELL) layers. The single QW is designed to emit at a wavelength coincident with the second excited state of the quantum dot. We...
Saved in:
Published in | IEEE journal of selected topics in quantum electronics Vol. 19; no. 4; p. 1900209 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report a hybrid quantum well (QW)/quantum dot active element for an application in broadband sources. These structures consist of an InGaAs QW and six InAs dot-in-well (DWELL) layers. The single QW is designed to emit at a wavelength coincident with the second excited state of the quantum dot. We compare two hybrid QW/quantum dot samples where the QW position is changed, and show that carrier transport effects make QW placement very important through current-voltage, capacitance-voltage, photocurrent, and temperature-dependent spontaneous emission measurements. Using the optimal structure, due to the combined effects of quantum dot ground states, first excited state, and QW emission, a positive modal gain spanning ~300 nm is achieved for the segmented contact device. The values for modal gain are further confirmed by simultaneous three-state lasing, which is studied spectroscopically. Finally, a hybrid QW/quantum dot superluminescent diode (SLD) is reported; the device exhibits a 3 dB emission spectrum of 213 nm, centered at 1230 nm with a corresponding output power of 1.1 mW. The hybrid SLD is then assessed for an application in an optical coherence tomography system; an axial resolution of ~4 μm is predicted. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2012.2235175 |