A 136-G \Omega Input-Impedance Active Electrode for Non-Contact Biopotential Signals Monitoring

This article describes an ultra-high input-impedance active electrode (AE) circuit and the system to sense biopotential signals through a capacitively coupled interface. Various techniques from both circuit and system aspects are used to eliminate the input parasitic capacitance of the AE. On-chip p...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 59; no. 2; pp. 1 - 11
Main Authors Qu, Tianxiang, Wang, Peizhuo, Lei, Liangbo, Hong, Zhiliang, Xu, Jiawei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article describes an ultra-high input-impedance active electrode (AE) circuit and the system to sense biopotential signals through a capacitively coupled interface. Various techniques from both circuit and system aspects are used to eliminate the input parasitic capacitance of the AE. On-chip parasitic capacitance is compensated by an auto-calibrated positive feedback loop (PFL) without applying any reference signal. A capacitor down-scaling technique combined with SAR-assisted PFL calibration enables femtofarad-level resolution of the capacitor array, alleviating the practical constraints of the conventional PFL to implement a small capacitor below 10 fF. Besides, a dummy input structure ensures that the pad and electrostatic discharge (ESD) capacitances are also canceled by the PFL, while off-chip parasitic capacitance on the printed circuit board (PCB) is nulled by active shielding. Fabricated in a standard 0.18-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m 1P6M CMOS process, the AE achieves an ultra-high input impedance of 136 G<inline-formula> <tex-math notation="LaTeX">\Omega</tex-math> </inline-formula> at 60 Hz (average of 10 samples). This is equivalent to an input capacitance of 19.5 fF and corresponds to a 2.7<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula>-68<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> improvement over the state-of-the-art. The AE exhibits an input signal range of 700 mV<inline-formula> <tex-math notation="LaTeX">_{\mathrm{pp}}</tex-math> </inline-formula> and an input-referred noise of 0.72 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>V<inline-formula> <tex-math notation="LaTeX">_{\mathrm{rms}}</tex-math> </inline-formula> (0.5-100 Hz) while consuming 10.46 <inline-formula> <tex-math notation="LaTeX">\mu </tex-math> </inline-formula>W from a 1.2-V supply. Each AE integrates an IC and a 3-cm<inline-formula> <tex-math notation="LaTeX">^{2}</tex-math> </inline-formula> copper electrode on the PCB, and the wearable system prototypes successfully measured high-quality electrocardiogram (ECG) and electroencephalogram (EEG) signals from test subjects through capacitively coupled interfaces.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2023.3284524