Global Regulation of Flexible Joint Robots With Input Saturation by Nonlinear I-PID-Type Control
This brief addresses the global regulation of torque-driven flexible joint robots with input constraints. It is reported a nonlinear control scheme with bounded actions that guarantees global asymptotic stability despite input saturation, matched and unmatched disturbances, and parametric uncertaint...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 32; no. 6; pp. 2385 - 2393 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2024.3391129 |
Cover
Loading…
Summary: | This brief addresses the global regulation of torque-driven flexible joint robots with input constraints. It is reported a nonlinear control scheme with bounded actions that guarantees global asymptotic stability despite input saturation, matched and unmatched disturbances, and parametric uncertainties. The control system has a double loop in a cascade configuration, where the outer loop has an integral (I) action driven by the joint deflection error. In addition, the inner loop has a nonlinear proportional-integral-derivative (PID-type) structure. Hence, an I-PID-type controller is obtained. The design methodology is based on a linear change of coordinates of the joint deflection and motor errors that allows the conclusion of global asymptotic stability via Lyapunov theory and the Barbashin-Krasovskii theorem. Sufficient conditions are explicitly stated and given in the form of matrix inequalities. Real-time experiments on a two-degrees-of-freedom flexible joint manipulator confirm the viability of the proposed controller, which exhibits better performance than the other two control algorithms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2024.3391129 |