New approach for multi-material design: Combination of laser beam and electromagnetic melt pool displacement by induced Lorentz forces
Multimaterial structures are a promising solution to reduce vehicle weight and save fuel or electric energy in automotive design. However, thermal joining of steel and aluminum alloys is a challenge to overcome due to different material properties and the formation of brittle intermetallic phases. I...
Saved in:
Published in | Journal of laser applications Vol. 35; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multimaterial structures are a promising solution to reduce vehicle weight and save fuel or electric energy in automotive design. However, thermal joining of steel and aluminum alloys is a challenge to overcome due to different material properties and the formation of brittle intermetallic phases. In this study, a new joining approach for producing overlap line-shaped joints is presented. The lower joining partner (EN AW 5754) is melted by a laser beam, and this melt is displaced into a line-shaped cavity of the upper joining partner (1.0330) by induced Lorentz forces. The melt solidifies in the cavity to a material and form-fitting joint. This approach needs no auxiliary joining elements or filler materials. Previous investigation to produce spot-shaped joints by using this approach showed that quality and reproducibility were limited by known melt pool dynamics of aluminum alloys (keyhole collapses). For line-shaped joints, the melt displacement can take place behind the keyhole. This allows the displacement process to be spatially uncoupled from the influence of keyhole collapses. The study shows that this improved the process stability and the quality of the joint. The created line-shaped joints were microstructurally characterized by transversal sections. Intermetallic phases were identified by electron backscatter diffraction and EDX analysis. The detected intermetallic phases consist of a 5–6 μm compact phase seam of Al5.6Fe2 and a needle-shaped phase of Al13Fe4. Tensile shear tests were carried out to quantify the load capacity. It was possible to create a joint with a load capacity of about 2 kN. |
---|---|
ISSN: | 1042-346X 1938-1387 |
DOI: | 10.2351/7.0000763 |