Quantum capacity of a deformed bosonic dephasing channel
In this paper, using the notion of nonlinear coherent states, we define a deformed bosonic dephasing channel modeling the impact of a Kerr medium on a quantum state, as it occurs, for instance, in quantum communication based on optical fibers. We show that, in certain regimes, the Kerr nonlinearity...
Saved in:
Published in | Optical switching and networking Vol. 57; p. 100814 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, using the notion of nonlinear coherent states, we define a deformed bosonic dephasing channel modeling the impact of a Kerr medium on a quantum state, as it occurs, for instance, in quantum communication based on optical fibers. We show that, in certain regimes, the Kerr nonlinearity is able to compensate the dephasing. In addition, our studies reveal that the quantum capacity of the deformed bosonic dephasing channel can be greater than that of the undeformed, standard bosonic dephasing channel for certain nonlinearity parameters. |
---|---|
ISSN: | 1573-4277 |
DOI: | 10.1016/j.osn.2025.100814 |