P-Tensor Product for Group C-Algebras
In this paper, we introduce new tensor products ⊗ p ( 1 ≤ p ≤ + ∞ ) on C ℓ p * ( Γ ) ⊗ C ℓ p * ( Γ ) and ⊗ c 0 on C c 0 * ( Γ ) ⊗ C c 0 * ( Γ ) for any discrete group Γ . We obtain that for 1 ≤ p < + ∞ C ℓ p * ( Γ ) ⊗ m a x C ℓ p * ( Γ ) = C ℓ p * ( Γ ) ⊗ p C ℓ p * ( Γ ) if and only if Γ is amena...
Saved in:
Published in | Mathematics (Basel) Vol. 8; no. 4; p. 627 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we introduce new tensor products ⊗ p ( 1 ≤ p ≤ + ∞ ) on C ℓ p * ( Γ ) ⊗ C ℓ p * ( Γ ) and ⊗ c 0 on C c 0 * ( Γ ) ⊗ C c 0 * ( Γ ) for any discrete group Γ . We obtain that for 1 ≤ p < + ∞ C ℓ p * ( Γ ) ⊗ m a x C ℓ p * ( Γ ) = C ℓ p * ( Γ ) ⊗ p C ℓ p * ( Γ ) if and only if Γ is amenable; C c 0 * ( Γ ) ⊗ m a x C c 0 * ( Γ ) = C c 0 * ( Γ ) ⊗ c 0 C c 0 * ( Γ ) if and only if Γ has Haagerup property. In particular, for the free group with two generators F 2 we show that C ℓ p * ( F 2 ) ⊗ p C ℓ p * ( F 2 ) ≇ C ℓ q * ( F 2 ) ⊗ q C ℓ q * ( F 2 ) for 2 ≤ q < p ≤ + ∞ . |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8040627 |