Biomedical Radar System for Real-Time Contactless Fall Detection and Indoor Localization
Fall incidents represent a major public health problem among elderly people. This resulted in a significant increase of the number of investigated systems aiming at detecting falls promptly. In this respect, in this work, a biomedical radar system is proposed for remote real-time fall detection and...
Saved in:
Published in | IEEE journal of electromagnetics, RF and microwaves in medicine and biology Vol. 7; no. 4; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fall incidents represent a major public health problem among elderly people. This resulted in a significant increase of the number of investigated systems aiming at detecting falls promptly. In this respect, in this work, a biomedical radar system is proposed for remote real-time fall detection and indoor localization. The system, consisting of a sensor and a base station, combines radar and wireless communication techniques, and uses a data processing technique to distinguish between fall events and normal movements. The classification, based on a Least-Square Support Vector Machine (LS -SVM), combined with the sliding window principle allows to perform fall detection in real-time. Moreover, it is capable to localize the subjects when the fall incident has been detected. The in-vivo validation showed a high success rate in detecting fall events, with a maximum delay of 340 ms. Moreover, a maximum mean absolute errors (MAE) of 3.8 cm and a maximum root-mean-square error (RMSE) of 7.5 cm were reported in measuring the subject's absolute distance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2469-7249 2469-7257 |
DOI: | 10.1109/JERM.2023.3278473 |