A 0.297-pJ/Bit 50.4-Gb/s/Wire Inverter-Based Short-Reach Simultaneous Bi-Directional Transceiver for Die-to-Die Interface in 5-nm CMOS

This article presents a clock-forwarded, inverter-based short-reach simultaneous bi-directional (ISR-SBD) physical layer (PHY) targeted for die-to-die communication over silicon interposers or similar high-density interconnect. Short-reach links of this type are increasingly important to support lar...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 58; no. 4; pp. 1062 - 1073
Main Authors Nishi, Yoshinori, Poulton, John W., Turner, Walker J., Chen, Xi, Song, Sanquan, Zimmer, Brian, Tell, Stephen G., Nedovic, Nikola, Wilson, John M., Dally, William J., Gray, C. Thomas
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article presents a clock-forwarded, inverter-based short-reach simultaneous bi-directional (ISR-SBD) physical layer (PHY) targeted for die-to-die communication over silicon interposers or similar high-density interconnect. Short-reach links of this type are increasingly important to support larger systems built with chiplets and multiple die and to facilitate the shift to medium- and long-range optical communication based on silicon photonics. This project explores the advantages of simultaneous bi-directional signaling (SBD) over other bandwidth-doubling techniques (e.g., PAM4). Fabricated in a 5-nm standard CMOS process, the ISR-SBD PHY demonstrates 50.4 Gb/s/wire (25.2 Gb/s each direction) and 0.297 pJ/bit on a 750-mV supply over a 1.2-mm on- chip channel.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2022.3232024