RingMo-SAM: A Foundation Model for Segment Anything in Multimodal Remote-Sensing Images

The proposal of the segment anything model (SAM) has created a new paradigm for the deep-learning-based semantic segmentation field and has shown amazing generalization performance. However, we find it may fail or perform poorly on multimodal remote-sensing scenarios, especially synthetic aperture r...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; pp. 1 - 16
Main Authors Yan, Zhiyuan, Li, Junxi, Li, Xuexue, Zhou, Ruixue, Zhang, Wenkai, Feng, Yingchao, Diao, Wenhui, Fu, Kun, Sun, Xian
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2023.3332219

Cover

Loading…
Abstract The proposal of the segment anything model (SAM) has created a new paradigm for the deep-learning-based semantic segmentation field and has shown amazing generalization performance. However, we find it may fail or perform poorly on multimodal remote-sensing scenarios, especially synthetic aperture radar (SAR) images. Besides, SAM does not provide category information for objects. In this article, we propose a foundation model for multimodal remote-sensing image segmentation called RingMo-SAM, which can not only segment anything in optical and SAR remote-sensing data, but also identify object categories. First, a large-scale dataset containing millions of segmentation instances is constructed by collecting multiple open-source datasets in this field to train the model. Then, by constructing an instance-type and terrain-type category-decoupling mask decoder (CDMDecoder), the categorywise segmentation of various objects is achieved. In addition, a prompt encoder embedded with the characteristics of multimodal remote-sensing data is designed. It not only supports multibox prompts to improve the segmentation accuracy of multiobjects in complicated remote-sensing scenes, but also supports SAR characteristics prompts to improve the segmentation performance on SAR images. Extensive experimental results on several datasets including iSAID, ISPRS Vaihingen, ISPRS Potsdam, AIR-PolSAR-Seg, and so on have demonstrated the effectiveness of our method.
AbstractList The proposal of the segment anything model (SAM) has created a new paradigm for the deep-learning-based semantic segmentation field and has shown amazing generalization performance. However, we find it may fail or perform poorly on multimodal remote-sensing scenarios, especially synthetic aperture radar (SAR) images. Besides, SAM does not provide category information for objects. In this article, we propose a foundation model for multimodal remote-sensing image segmentation called RingMo-SAM, which can not only segment anything in optical and SAR remote-sensing data, but also identify object categories. First, a large-scale dataset containing millions of segmentation instances is constructed by collecting multiple open-source datasets in this field to train the model. Then, by constructing an instance-type and terrain-type category-decoupling mask decoder (CDMDecoder), the categorywise segmentation of various objects is achieved. In addition, a prompt encoder embedded with the characteristics of multimodal remote-sensing data is designed. It not only supports multibox prompts to improve the segmentation accuracy of multiobjects in complicated remote-sensing scenes, but also supports SAR characteristics prompts to improve the segmentation performance on SAR images. Extensive experimental results on several datasets including iSAID, ISPRS Vaihingen, ISPRS Potsdam, AIR-PolSAR-Seg, and so on have demonstrated the effectiveness of our method.
Author Yan, Zhiyuan
Li, Junxi
Diao, Wenhui
Li, Xuexue
Sun, Xian
Fu, Kun
Feng, Yingchao
Zhou, Ruixue
Zhang, Wenkai
Author_xml – sequence: 1
  givenname: Zhiyuan
  orcidid: 0000-0002-4264-6868
  surname: Yan
  fullname: Yan, Zhiyuan
  email: yanzy@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Junxi
  orcidid: 0000-0002-9428-9751
  surname: Li
  fullname: Li, Junxi
  email: lijunxi191@mails.ucas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Xuexue
  orcidid: 0000-0002-0177-7001
  surname: Li
  fullname: Li, Xuexue
  email: lixuexue20@mails.ucas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Ruixue
  surname: Zhou
  fullname: Zhou, Ruixue
  email: zhouruixue18@mails.ucas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Wenkai
  orcidid: 0000-0002-8903-2708
  surname: Zhang
  fullname: Zhang, Wenkai
  email: zhangwk@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Yingchao
  orcidid: 0000-0003-4017-8885
  surname: Feng
  fullname: Feng, Yingchao
  email: fengyc@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Wenhui
  orcidid: 0000-0002-3931-3974
  surname: Diao
  fullname: Diao, Wenhui
  email: zhangwk@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 8
  givenname: Kun
  orcidid: 0000-0002-8647-9627
  surname: Fu
  fullname: Fu, Kun
  email: kunfuiecas@gmail.com
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 9
  givenname: Xian
  orcidid: 0000-0002-0038-9816
  surname: Sun
  fullname: Sun, Xian
  email: sunxian@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kL1OwzAUhS1UJNrCAyAxRGJO8U_sxGxRRUulVkhNEaPlJE5JldjFcYa-PQ7tgBiY7nDOufeebwJG2mgFwD2CM4Qgf9ott9kMQ0xmhBCMEb8CY0RpEkIWRSMwhoizECcc34BJ1x0gRBFF8Rh8bGu935gwSzfPQRosTK9L6Wqjg40pVRNUxgaZ2rdKuyDVJ_fp7UHt1b5xdWtK2QRb1RqnwkzpbhBXrdyr7hZcV7Lp1N1lTsH74mU3fw3Xb8vVPF2HBeaRCxknJS4UpBCVSikuI5hApnIMGS1knpCclTiqmMwRYmVOClrFMPHGijKWYEqm4PG892jNV686Jw6mt9qfFL4thZBTGnsXOrsKa7rOqkocbd1KexIIioGfGPiJgZ-48POZ-E-mqN0PGmdl3fybfDgna1_p1yWCKPfPfANfy367
CODEN IGRSD2
CitedBy_id crossref_primary_10_1080_17538947_2024_2447347
crossref_primary_10_1109_TGRS_2024_3407884
crossref_primary_10_1109_LGRS_2024_3422805
crossref_primary_10_1109_TGRS_2024_3517878
crossref_primary_10_1080_22797254_2024_2447344
crossref_primary_10_3390_jimaging10090220
crossref_primary_10_1117_1_JRS_18_036503
crossref_primary_10_1109_JSTARS_2024_3525072
crossref_primary_10_1109_TGRS_2024_3519891
crossref_primary_10_3389_fenvs_2024_1395337
crossref_primary_10_1109_JSTARS_2025_3542255
crossref_primary_10_1109_JSTARS_2024_3434448
crossref_primary_10_1109_TGRS_2024_3443420
crossref_primary_10_1109_TGRS_2024_3446950
crossref_primary_10_1080_13658816_2024_2397441
crossref_primary_10_1109_TIP_2024_3424335
crossref_primary_10_3390_rs17020179
crossref_primary_10_1080_10095020_2024_2446307
crossref_primary_10_1109_ACCESS_2024_3516519
crossref_primary_10_1109_JSTARS_2024_3504409
crossref_primary_10_1109_TGRS_2025_3531930
crossref_primary_10_1109_TGRS_2025_3529031
crossref_primary_10_3390_rs16193620
crossref_primary_10_1109_JSTARS_2025_3532690
Cites_doi 10.1145/3560815
10.1007/978-3-030-01228-1_26
10.1016/j.isprsjprs.2017.11.011
10.1109/JSTARS.2021.3119654
10.1007/s11432-022-3663-1
10.1016/j.isprsjprs.2023.04.009
10.1109/JSTARS.2021.3106941
10.1109/LGRS.2021.3063799
10.1162/neco_a_00990
10.1016/j.isprsjprs.2021.12.004
10.1109/TGRS.2022.3176603
10.1109/ICCV48922.2021.00986
10.1109/CVPR.2015.7298965
10.1109/ICCV.2019.00069
10.48550/arXiv.2102.04306
10.1016/j.jag.2021.102638
10.1109/CVPR52688.2022.00135
10.1109/CVPR46437.2021.01625
10.1007/s11263-022-01653-1
10.1109/JSTARS.2018.2873417
10.48550/arXiv.1909.11065
10.1109/TGRS.2023.3317016
10.1007/978-3-031-19827-4_41
10.1109/CVPR52688.2022.01170
10.1109/CVPR.2018.00813
10.1016/j.rse.2019.04.014
10.1007/s11432-022-3599-y
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2019.00584
10.1007/s11432-022-3610-5
10.1109/JSTARS.2020.3032672
10.1109/CVPR52729.2023.01398
10.1109/TGRS.2020.2976658
10.1109/CVPR52729.2023.00682
10.1109/TGRS.2021.3130174
10.1109/CVPR.2017.660
10.1007/s11432-022-3588-0
10.1109/iccv51070.2023.00110
10.1007/978-3-031-19833-5_7
10.1109/CVPR.2016.90
10.48550/arXiv.1802.02611
10.1109/CVPR46437.2021.00681
10.1109/CVPR52688.2022.01369
10.5555/3524938.3525087
10.1109/ICCV48922.2021.00928
10.1109/ICCV51070.2023.00371
10.1109/CVPR52688.2022.01179
10.1109/tnnls.2023.3327962
10.1109/JSTARS.2022.3170326
10.1109/TGRS.2023.3290411
10.1109/TGRS.2016.2554563
10.1109/CVPRW.2016.90
10.1109/CVPR.2019.00326
10.18653/v1/2021.emnlp-main.243
10.1109/TGRS.2022.3194732
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3332219
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2023_3332219
10315957
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFB3900504
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-693d2ce0501deee9a40806eb2065cab83b6d24f6ab116db3c5f708ee9f5668253
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:22:19 EDT 2025
Tue Jul 01 02:15:16 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Aug 27 02:25:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-693d2ce0501deee9a40806eb2065cab83b6d24f6ab116db3c5f708ee9f5668253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3931-3974
0000-0002-8647-9627
0000-0002-8903-2708
0000-0002-0038-9816
0000-0002-4264-6868
0000-0002-9428-9751
0000-0003-4017-8885
0000-0002-0177-7001
PQID 2895009557
PQPubID 85465
PageCount 16
ParticipantIDs crossref_primary_10_1109_TGRS_2023_3332219
crossref_citationtrail_10_1109_TGRS_2023_3332219
proquest_journals_2895009557
ieee_primary_10315957
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Jain (ref22) 2022
ref56
ref15
ref59
ref14
Dehghani (ref33) 2023
ref58
ref52
Lin (ref71) 2019
Krizhevsky (ref5); 25
ref54
(ref6) 2023
Chen (ref53) 2023
ref17
ref16
ref18
Zamir (ref10)
ref50
ref46
ref45
Lisa Li (ref43) 2021
ref48
ref42
Han (ref69); 34
ref8
ref7
ref4
Brown (ref30); 33
ref3
ref40
Yao (ref47) 2021
Jiang (ref49) 2019
ref80
ref35
ref34
ref78
ref37
ref36
Zou (ref9) 2023
ref75
ref74
ref77
ref32
ref76
(ref31) 2023
ref1
(ref11) 2020
Liang (ref38) 2022
Alayrac (ref44); 35
Xu (ref55) 2021
ref70
ref73
ref72
Chen (ref41) 2023
Couprie (ref26) 2013
Liu (ref39) 2023
ref24
ref68
Wang (ref79); 1
ref23
ref67
Bahng (ref51) 2022
ref25
ref20
ref64
ref63
ref66
ref21
ref65
ref28
ref27
Chen (ref2) 2014
ref29
ref60
Chen (ref19) 2017
ref62
ref61
References_xml – ident: ref36
  doi: 10.1145/3560815
– ident: ref4
  doi: 10.1007/978-3-030-01228-1_26
– ident: ref27
  doi: 10.1016/j.isprsjprs.2017.11.011
– start-page: 28
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  ident: ref10
  article-title: iSAID: A large-scale dataset for instance segmentation in aerial images
– year: 2022
  ident: ref38
  article-title: Open-vocabulary semantic segmentation with mask-adapted CLIP
  publication-title: arXiv:2210.04150
– year: 2021
  ident: ref43
  article-title: Prefix-tuning: Optimizing continuous prompts for generation
  publication-title: arXiv:2101.00190
– ident: ref73
  doi: 10.1109/JSTARS.2021.3119654
– ident: ref15
  doi: 10.1007/s11432-022-3663-1
– ident: ref57
  doi: 10.1016/j.isprsjprs.2023.04.009
– volume: 34
  start-page: 15908
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref69
  article-title: Transformer in transformer
– year: 2023
  ident: ref39
  article-title: Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection
  publication-title: arXiv:2303.05499
– ident: ref59
  doi: 10.1109/JSTARS.2021.3106941
– ident: ref75
  doi: 10.1109/LGRS.2021.3063799
– ident: ref14
  doi: 10.1162/neco_a_00990
– ident: ref80
  doi: 10.1016/j.isprsjprs.2021.12.004
– ident: ref67
  doi: 10.1109/TGRS.2022.3176603
– ident: ref78
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref61
  doi: 10.1109/CVPR.2015.7298965
– ident: ref3
  doi: 10.1109/ICCV.2019.00069
– ident: ref70
  doi: 10.48550/arXiv.2102.04306
– ident: ref12
  doi: 10.1016/j.jag.2021.102638
– ident: ref40
  doi: 10.1109/CVPR52688.2022.00135
– ident: ref72
  doi: 10.1109/CVPR46437.2021.01625
– volume: 33
  start-page: 1877
  volume-title: Proc. Adv. Neur. Inf. Process. Sys.
  ident: ref30
  article-title: Language models are few-shot learners
– ident: ref45
  doi: 10.1007/s11263-022-01653-1
– year: 2023
  ident: ref53
  article-title: RSPrompter: Learning to prompt for remote sensing instance segmentation based on visual foundation model
  publication-title: arXiv:2306.16269
– year: 2021
  ident: ref47
  article-title: CPT: Colorful prompt tuning for pre-trained vision-language models
  publication-title: arXiv:2109.11797
– ident: ref58
  doi: 10.1109/JSTARS.2018.2873417
– ident: ref76
  doi: 10.48550/arXiv.1909.11065
– ident: ref17
  doi: 10.1109/TGRS.2023.3317016
– ident: ref50
  doi: 10.1007/978-3-031-19827-4_41
– ident: ref34
  doi: 10.1109/CVPR52688.2022.01170
– ident: ref63
  doi: 10.1109/CVPR.2018.00813
– ident: ref28
  doi: 10.1016/j.rse.2019.04.014
– volume-title: GPT-4
  year: 2023
  ident: ref6
– ident: ref16
  doi: 10.1007/s11432-022-3599-y
– year: 2019
  ident: ref71
  article-title: SAN: Scale-aware network for semantic segmentation of high-resolution aerial images
  publication-title: arXiv:1907.03089
– year: 2019
  ident: ref49
  article-title: How can we know what language models know?
  publication-title: arXiv:1911.12543
– ident: ref60
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref66
  doi: 10.1109/CVPR.2019.00584
– ident: ref23
  doi: 10.1007/s11432-022-3610-5
– ident: ref68
  doi: 10.1109/JSTARS.2020.3032672
– ident: ref35
  doi: 10.1109/CVPR52729.2023.01398
– ident: ref74
  doi: 10.1109/TGRS.2020.2976658
– ident: ref52
  doi: 10.1109/CVPR52729.2023.00682
– ident: ref56
  doi: 10.1109/TGRS.2021.3130174
– year: 2014
  ident: ref2
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: arXiv:1412.7062
– volume: 35
  start-page: 23716
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Flamingo: A visual language model for few-shot learning
– ident: ref1
  doi: 10.1109/CVPR.2017.660
– ident: ref24
  doi: 10.1007/s11432-022-3588-0
– year: 2022
  ident: ref51
  article-title: Exploring visual prompts for adapting large-scale models
  publication-title: arXiv:2203.17274
– ident: ref8
  doi: 10.1109/iccv51070.2023.00110
– volume: 1
  volume-title: Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks
  ident: ref79
  article-title: LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation
– year: 2023
  ident: ref41
  article-title: SAM fails to segment anything?—SAM-adapter: Adapting SAM in underperformed scenes: Camouflage, shadow, medical image segmentation, and more
  publication-title: arXiv:2304.09148
– ident: ref46
  doi: 10.1007/978-3-031-19833-5_7
– ident: ref77
  doi: 10.1109/CVPR.2016.90
– volume: 25
  start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref5
  article-title: ImageNet classification with deep convolutional neural networks
– year: 2023
  ident: ref9
  article-title: Segment everything everywhere all at once
  publication-title: arXiv:2304.06718
– ident: ref20
  doi: 10.48550/arXiv.1802.02611
– ident: ref65
  doi: 10.1109/CVPR46437.2021.00681
– ident: ref54
  doi: 10.1109/CVPR52688.2022.01369
– year: 2022
  ident: ref22
  article-title: Multimodal contrastive learning for remote sensing tasks
  publication-title: arXiv:2209.02329
– year: 2017
  ident: ref19
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv:1706.05587
– year: 2013
  ident: ref26
  article-title: Indoor semantic segmentation using depth information
  publication-title: arXiv:1301.3572
– ident: ref29
  doi: 10.5555/3524938.3525087
– ident: ref62
  doi: 10.1109/ICCV48922.2021.00928
– ident: ref7
  doi: 10.1109/ICCV51070.2023.00371
– ident: ref32
  doi: 10.1109/CVPR52688.2022.01179
– ident: ref48
  doi: 10.1109/tnnls.2023.3327962
– volume-title: ISPRS 2D Semantic Labeling Contest Vaihingen
  year: 2020
  ident: ref11
– year: 2021
  ident: ref55
  article-title: A simple baseline for open-vocabulary semantic segmentation with pre-trained vision-language model
  publication-title: arXiv:2112. 14757
– ident: ref13
  doi: 10.1109/JSTARS.2022.3170326
– volume-title: Introducing Chatgpt
  year: 2023
  ident: ref31
– ident: ref18
  doi: 10.1109/TGRS.2023.3290411
– ident: ref21
  doi: 10.1109/TGRS.2016.2554563
– ident: ref25
  doi: 10.1109/CVPRW.2016.90
– ident: ref64
  doi: 10.1109/CVPR.2019.00326
– ident: ref42
  doi: 10.18653/v1/2021.emnlp-main.243
– year: 2023
  ident: ref33
  article-title: Scaling vision transformers to 22 billion parameters
  publication-title: arXiv:2302.05442
– ident: ref37
  doi: 10.1109/TGRS.2022.3194732
SSID ssj0014517
Score 2.6073673
Snippet The proposal of the segment anything model (SAM) has created a new paradigm for the deep-learning-based semantic segmentation field and has shown amazing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Datasets
Decoupling
Feature extraction
Image processing
Image segmentation
Multimodal remote-sensing images
prompt learning
Radar imaging
Radar polarimetry
Remote sensing
SAR (radar)
segment anything model (SAM)
Semantic segmentation
Synthetic aperture radar
Task analysis
Training
Title RingMo-SAM: A Foundation Model for Segment Anything in Multimodal Remote-Sensing Images
URI https://ieeexplore.ieee.org/document/10315957
https://www.proquest.com/docview/2895009557
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH84QdCD3-J0Sg6ehNZ-JW28DVGnMA_rht5K81ER5yauO-hf70vazaEo3tomaVJ-r8n7Je8D4MQXHGmPQqYayxwJitKOyIvQwbUkoYnUHre2Od071hlEtw_0oXZWt74wWmtrfKZdc2nP8tVYTs1W2ZlNScBp3IAGMrfKWWt-ZBBRv_aNZg6yiKA-wvQ9fta_7qWuyRPuhiEKsImqs7AI2awqP6Ziu75cbcDdbGSVWcmzOy2FKz--BW3899A3Yb3WNEm7Eo0tWNKjbVhbiD-4DSvW_lNOduC-hw-6Yydtd89Jm3wlWyImWdqQoGpLUv1oOiHt0Xtp9q3IE5Yae8SXscKOehpR105qLOKx8OYFZ6rJLgyuLvsXHafOueDIgEelw3ioAoSIer7Cj-B5hColQ_qNqorMRRIKpoKoYLnwfaZEKGkRewlWLFAvRLYZ7sHyaDzS-0CCUAeKBYWKsYWPa6DiEcUbTyifSU2b4M1AyGQdkNzkxRhmlph4PDO4ZQa3rMatCafzJq9VNI6_Ku8aHBYqVhA0oTWDOqt_2EmGEkNtOL744Jdmh7Bq3l5tv7RguXyb6iNUSEpxbAXxEz1w2e8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BEQIOrEWU1QdOSAnZ7NTcKgS0QHtoi-AWxUsQAlpE0wN8PWMnhQoE4pbEtuzoTTLz7FkADn3BkfYoZKqxTJGgKO2INAsd1CV1Wpfa49Y3p91hzZvo8o7elcHqNhZGa22dz7RrLu1ZvhrKsdkqO7YlCTiNZ2GOmmjcIlzr89Agon4ZHc0c5BFBeYjpe_y4f9HtuaZSuBuGKMImr86UGrJ1VX78jK2GOV-BzmRthWPJozvOhSvfv6Vt_PfiV2G5tDVJoxCONZjRg3VYmspAuA7z1gNUjjbgtosP2kOn12ifkAb5KrdETLm0J4LGLenpezMJaQzecrNzRR6w1XgkPg8VTtTViLt2esYnHhtbz_ivGlXh5vysf9p0yqoLjgx4lDuMhypAkKjnK3wJnkZoVDIk4GisyFTUQ8FUEGUsFb7PlAglzWKvjh0ztAyRb4abUBkMB3oLSBDqQLEgUzGO8FELKh5RvPGE8pnUtAbeBIRElinJTWWMp8RSE48nBrfE4JaUuNXg6HPIS5GP46_OVYPDVMcCghrsTqBOyk92lKDEUJuQL97-ZdgBLDT77evkutW52oFFM1OxGbMLlfx1rPfQPMnFvhXKD8Uy3Tc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RingMo-SAM%3A+A+Foundation+Model+for+Segment+Anything+in+Multimodal+Remote-Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yan%2C+Zhiyuan&rft.au=Li%2C+Junxi&rft.au=Li%2C+Xuexue&rft.au=Zhou%2C+Ruixue&rft.date=2023&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2023.3332219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3332219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon