RingMo-SAM: A Foundation Model for Segment Anything in Multimodal Remote-Sensing Images

The proposal of the segment anything model (SAM) has created a new paradigm for the deep-learning-based semantic segmentation field and has shown amazing generalization performance. However, we find it may fail or perform poorly on multimodal remote-sensing scenarios, especially synthetic aperture r...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; pp. 1 - 16
Main Authors Yan, Zhiyuan, Li, Junxi, Li, Xuexue, Zhou, Ruixue, Zhang, Wenkai, Feng, Yingchao, Diao, Wenhui, Fu, Kun, Sun, Xian
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The proposal of the segment anything model (SAM) has created a new paradigm for the deep-learning-based semantic segmentation field and has shown amazing generalization performance. However, we find it may fail or perform poorly on multimodal remote-sensing scenarios, especially synthetic aperture radar (SAR) images. Besides, SAM does not provide category information for objects. In this article, we propose a foundation model for multimodal remote-sensing image segmentation called RingMo-SAM, which can not only segment anything in optical and SAR remote-sensing data, but also identify object categories. First, a large-scale dataset containing millions of segmentation instances is constructed by collecting multiple open-source datasets in this field to train the model. Then, by constructing an instance-type and terrain-type category-decoupling mask decoder (CDMDecoder), the categorywise segmentation of various objects is achieved. In addition, a prompt encoder embedded with the characteristics of multimodal remote-sensing data is designed. It not only supports multibox prompts to improve the segmentation accuracy of multiobjects in complicated remote-sensing scenes, but also supports SAR characteristics prompts to improve the segmentation performance on SAR images. Extensive experimental results on several datasets including iSAID, ISPRS Vaihingen, ISPRS Potsdam, AIR-PolSAR-Seg, and so on have demonstrated the effectiveness of our method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3332219