Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication
For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS imag...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS image hashing methods for integrity authentication are notably limited as they terminate at the feature extraction stage and fail to achieve an end-to-end construction from image to hash value. Consequently, there is a looming risk of uncontrollability and unexpected events. To overcome this problem, this letter proposes a deep subject-sensitive hashing network (DSSHN), presenting a unified network for end-to-end feature extraction and hash construction. Improved convolutional block attention module (I-CBAM) helps the network to focus more on subject-sensitive features. A targeted training scheme ensures perceptual hash robustness. The experimental results reveal that the algorithm achieves the best tampering detection performance, with top AUC (0.994) and leading precision and recall rates. |
---|---|
AbstractList | For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS image hashing methods for integrity authentication are notably limited as they terminate at the feature extraction stage and fail to achieve an end-to-end construction from image to hash value. Consequently, there is a looming risk of uncontrollability and unexpected events. To overcome this problem, this letter proposes a deep subject-sensitive hashing network (DSSHN), presenting a unified network for end-to-end feature extraction and hash construction. Improved convolutional block attention module (I-CBAM) helps the network to focus more on subject-sensitive features. A targeted training scheme ensures perceptual hash robustness. The experimental results reveal that the algorithm achieves the best tampering detection performance, with top AUC (0.994) and leading precision and recall rates. |
Author | Li, Hui Ren, Na Zhu, Changqing Hu, Luanyun Chen, Sheng Xu, Dingjie |
Author_xml | – sequence: 1 givenname: Dingjie orcidid: 0000-0001-7598-0638 surname: Xu fullname: Xu, Dingjie email: csuxdj@outlook.com organization: Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China – sequence: 2 givenname: Sheng surname: Chen fullname: Chen, Sheng email: cs_geo@163.com organization: Hunan Engineering Research Center of Geographic Information Security and Application, Changsha, China – sequence: 3 givenname: Changqing orcidid: 0000-0003-0813-2297 surname: Zhu fullname: Zhu, Changqing email: zcq88@263.net organization: Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China – sequence: 4 givenname: Hui surname: Li fullname: Li, Hui email: lihuigeo@126.com organization: Hunan Engineering Research Center of Geographic Information Security and Application, Changsha, China – sequence: 5 givenname: Luanyun surname: Hu fullname: Hu, Luanyun email: huluanyun@126.com organization: Hunan Engineering Research Center of Geographic Information Security and Application, Changsha, China – sequence: 6 givenname: Na orcidid: 0000-0002-1113-6494 surname: Ren fullname: Ren, Na email: renna1026@163.com organization: Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China |
BookMark | eNp9kMFOAjEQQBujiYB-gImHJp4X221Lu0eCCiREE9DE26aUWSjCFtuuhr93FzgYD546h_dmmtdG56UrAaEbSrqUkux-MpzOuilJeZdxIimhZ6hFhVAJEZKeNzMXicjU-yVqh7AmNamUbKHVA8AOz6r5GkxMZlAGG-0X4JEOK1su8TPEb-c_cOE8HtnlKplCcJsqWlfiKWxdBHyQanS81UvA4zLC0tu4x_0qrqCM1uiGvkIXhd4EuD69HfT29Pg6GCWTl-F40J8kJs14TLiUoih6RIPOCtDpgmVc9eScGqYW2ugi7UnO5lowvSgMJ5ooolI5J2A4ZJyyDro77t1591lBiPnaVb6sT-aM9BSVgmeipuSRMt6F4KHIjY2Hf0av7SanJG-y5k3WvMman7LWJv1j7rzdar__17k9OhYAfvGCpyJl7AdFiYbl |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_3390_ijgi13090336 |
Cites_doi | 10.3390/info9090229 10.1109/iceet1.2018.8338621 10.3390/ijgi9040254 10.3390/rs15194860 10.1109/TCSVT.2019.2890966 10.1088/1757-899x/322/5/052055 10.1109/TGRS.2020.3035676 10.1007/s41651-019-0039-9 10.48550/ARXIV.1807.06521 10.1080/2150704X.2018.1504334 10.1109/TCSVT.2020.3047142 10.3390/ijgi9080485 10.1145/1869790.1869829 10.3390/rs13245109 10.1109/TMM.2020.2999188 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2024.3407101 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 10_1109_LGRS_2024_3407101 10542523 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFC3803600; 2023YFB3907100 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China; National Nature Science Foundation of China grantid: 42071362 funderid: 10.13039/501100001809 – fundername: Research Foundation of the Department of Natural Resources of Hunan Province grantid: 20240103XX funderid: 10.13039/501100017600 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-4775ff60aea9fea2d394867b1c38dacaf26743ba53adfc40a080827b0ec4e9413 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:24:17 EDT 2025 Thu Jul 03 08:38:58 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Wed Aug 27 01:41:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-4775ff60aea9fea2d394867b1c38dacaf26743ba53adfc40a080827b0ec4e9413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7598-0638 0000-0002-1113-6494 0000-0003-0813-2297 |
PQID | 3068175495 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3068175495 crossref_citationtrail_10_1109_LGRS_2024_3407101 crossref_primary_10_1109_LGRS_2024_3407101 ieee_primary_10542523 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.3390/info9090229 – ident: ref1 doi: 10.1109/iceet1.2018.8338621 – ident: ref4 doi: 10.3390/ijgi9040254 – ident: ref5 doi: 10.3390/rs15194860 – ident: ref14 doi: 10.1109/TCSVT.2019.2890966 – ident: ref2 doi: 10.1088/1757-899x/322/5/052055 – ident: ref8 doi: 10.1109/TGRS.2020.3035676 – ident: ref9 doi: 10.1007/s41651-019-0039-9 – ident: ref10 doi: 10.48550/ARXIV.1807.06521 – ident: ref11 doi: 10.1080/2150704X.2018.1504334 – ident: ref15 doi: 10.1109/TCSVT.2020.3047142 – ident: ref6 doi: 10.3390/ijgi9080485 – ident: ref12 doi: 10.1145/1869790.1869829 – ident: ref7 doi: 10.3390/rs13245109 – ident: ref13 doi: 10.1109/TMM.2020.2999188 |
SSID | ssj0024887 |
Score | 2.3825529 |
Snippet | For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Authentication CBAM Construction Deep learning Feature extraction High resolution high-resolution remote sensing (HRRS) image Image coding Image resolution Integrity integrity authentication Machine learning Remote sensing Robustness Sensitivity subject-sensitive hashing Training |
Title | Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication |
URI | https://ieeexplore.ieee.org/document/10542523 https://www.proquest.com/docview/3068175495 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxQxDLZoJdRegL7EQkE5cKqUbWYm88gRAe22gj30Ie1tlGQcVWq7rWD3UH49dpIFBCriNgdnFOlzHNux_QG8U1XdhtCgVF1opLYapbNNKU3nQ-Ww8EXD_c5fps3kUp_O6lluVo-9MIgYi89wzJ_xLX-480tOldEJr0nFymoN1ihyS81avwbrdZENj10CWZtulp8wC2UOPx-fnVMoWOpxxfFLJoBZXUKRVeUvUxzvl6PnMF3tLJWVXI-XCzf23_8Y2vjfW38Bz7KnKd4n1diCJzjfho1Men71sA1PjyOr78MOXH1EvBdkQzgpI8-5pp2toJgkpiUxTbXighxcwYUhkpP-SWXFGRLYKOIiEj25JQMlTuIQCnLwBafguCApZQZ34fLo08WHicwUDNKXRi-kbtuaoFQWrQloy6EyPKLPFb7qButtKLmJwdm6skPwWllyQLuydQq9RkMX5B6sz-_m-BKEC6oZ6so4HYIuHAUyvuUSADQeg1F-BGqFSe_zfHKmybjpY5yiTM8w9gxjn2EcwcHPJfdpOMe_hHcZlt8EEyIj2F8h3-fz-62nQKojx4qix1ePLHsNm_z3lI3Zh_XF1yW-If9k4d5GvfwBgsTh9w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BEWovPEoRgQI-cEJy8O56Hz4ioE0gzaEPKbeV7R2rUiGtSnIov54Z2wEEAnHbg6219I3n5Zn5AF6pqm5DaFCqLjRSW43S2aaUpvOhclj4ouF-56N5MznTHxf1Ijerx14YRIzFZzjmz_iWP1z6NafK6IbXJGJldRvukOGvy9Su9XO0Xhf58NgpkLXpFvkRs1Dmzezw-ISCwVKPK45gMgXMxgxFXpU_lHG0MAf3Yb45WyosuRivV27sv_02tvG_D_8A7mVfU7xNwvEQbuFyF7Yz7fn5zS7cPYy8vjeP4Pw94pUgLcJpGXnCVe2sB8UkcS2JeaoWF-TiCi4NkZz2T0IrjpHgRhE30dLpF1JRYhrHUJCLLzgJxyVJKTe4B2cHH07fTWQmYZC-NHolddvWBKayaE1AWw6V4SF9rvBVN1hvQ8ltDM7WlR2C18qSC9qVrVPoNRoykY9ha3m5xCcgXFDNUFfG6RB04SiU8S0XAaDxGIzyI1AbTHqfJ5QzUcbnPkYqyvQMY88w9hnGEbz-seUqjef41-I9huWXhQmREexvkO_zDf7aUyjVkWtF8ePTv2x7CduT06NZP5vOPz2DHf5Tys3sw9bqeo3PyVtZuRdRRr8DdsHlQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Subject-Sensitive+Hashing+Network+for+High-Resolution+Remote+Sensing+Image+Integrity+Authentication&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Xu%2C+Dingjie&rft.au=Chen%2C+Sheng&rft.au=Zhu%2C+Changqing&rft.au=Li%2C+Hui&rft.date=2024&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3407101&rft.externalDocID=10542523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |