Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication

For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS imag...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5
Main Authors Xu, Dingjie, Chen, Sheng, Zhu, Changqing, Li, Hui, Hu, Luanyun, Ren, Na
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS image hashing methods for integrity authentication are notably limited as they terminate at the feature extraction stage and fail to achieve an end-to-end construction from image to hash value. Consequently, there is a looming risk of uncontrollability and unexpected events. To overcome this problem, this letter proposes a deep subject-sensitive hashing network (DSSHN), presenting a unified network for end-to-end feature extraction and hash construction. Improved convolutional block attention module (I-CBAM) helps the network to focus more on subject-sensitive features. A targeted training scheme ensures perceptual hash robustness. The experimental results reveal that the algorithm achieves the best tampering detection performance, with top AUC (0.994) and leading precision and recall rates.
AbstractList For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS image hashing methods for integrity authentication are notably limited as they terminate at the feature extraction stage and fail to achieve an end-to-end construction from image to hash value. Consequently, there is a looming risk of uncontrollability and unexpected events. To overcome this problem, this letter proposes a deep subject-sensitive hashing network (DSSHN), presenting a unified network for end-to-end feature extraction and hash construction. Improved convolutional block attention module (I-CBAM) helps the network to focus more on subject-sensitive features. A targeted training scheme ensures perceptual hash robustness. The experimental results reveal that the algorithm achieves the best tampering detection performance, with top AUC (0.994) and leading precision and recall rates.
Author Li, Hui
Ren, Na
Zhu, Changqing
Hu, Luanyun
Chen, Sheng
Xu, Dingjie
Author_xml – sequence: 1
  givenname: Dingjie
  orcidid: 0000-0001-7598-0638
  surname: Xu
  fullname: Xu, Dingjie
  email: csuxdj@outlook.com
  organization: Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
– sequence: 2
  givenname: Sheng
  surname: Chen
  fullname: Chen, Sheng
  email: cs_geo@163.com
  organization: Hunan Engineering Research Center of Geographic Information Security and Application, Changsha, China
– sequence: 3
  givenname: Changqing
  orcidid: 0000-0003-0813-2297
  surname: Zhu
  fullname: Zhu, Changqing
  email: zcq88@263.net
  organization: Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
– sequence: 4
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  email: lihuigeo@126.com
  organization: Hunan Engineering Research Center of Geographic Information Security and Application, Changsha, China
– sequence: 5
  givenname: Luanyun
  surname: Hu
  fullname: Hu, Luanyun
  email: huluanyun@126.com
  organization: Hunan Engineering Research Center of Geographic Information Security and Application, Changsha, China
– sequence: 6
  givenname: Na
  orcidid: 0000-0002-1113-6494
  surname: Ren
  fullname: Ren, Na
  email: renna1026@163.com
  organization: Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
BookMark eNp9kMFOAjEQQBujiYB-gImHJp4X221Lu0eCCiREE9DE26aUWSjCFtuuhr93FzgYD546h_dmmtdG56UrAaEbSrqUkux-MpzOuilJeZdxIimhZ6hFhVAJEZKeNzMXicjU-yVqh7AmNamUbKHVA8AOz6r5GkxMZlAGG-0X4JEOK1su8TPEb-c_cOE8HtnlKplCcJsqWlfiKWxdBHyQanS81UvA4zLC0tu4x_0qrqCM1uiGvkIXhd4EuD69HfT29Pg6GCWTl-F40J8kJs14TLiUoih6RIPOCtDpgmVc9eScGqYW2ugi7UnO5lowvSgMJ5ooolI5J2A4ZJyyDro77t1591lBiPnaVb6sT-aM9BSVgmeipuSRMt6F4KHIjY2Hf0av7SanJG-y5k3WvMman7LWJv1j7rzdar__17k9OhYAfvGCpyJl7AdFiYbl
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_ijgi13090336
Cites_doi 10.3390/info9090229
10.1109/iceet1.2018.8338621
10.3390/ijgi9040254
10.3390/rs15194860
10.1109/TCSVT.2019.2890966
10.1088/1757-899x/322/5/052055
10.1109/TGRS.2020.3035676
10.1007/s41651-019-0039-9
10.48550/ARXIV.1807.06521
10.1080/2150704X.2018.1504334
10.1109/TCSVT.2020.3047142
10.3390/ijgi9080485
10.1145/1869790.1869829
10.3390/rs13245109
10.1109/TMM.2020.2999188
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2024.3407101
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2024_3407101
10542523
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFC3803600; 2023YFB3907100
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: 42071362
  funderid: 10.13039/501100001809
– fundername: Research Foundation of the Department of Natural Resources of Hunan Province
  grantid: 20240103XX
  funderid: 10.13039/501100017600
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-4775ff60aea9fea2d394867b1c38dacaf26743ba53adfc40a080827b0ec4e9413
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:24:17 EDT 2025
Thu Jul 03 08:38:58 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Wed Aug 27 01:41:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-4775ff60aea9fea2d394867b1c38dacaf26743ba53adfc40a080827b0ec4e9413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7598-0638
0000-0002-1113-6494
0000-0003-0813-2297
PQID 3068175495
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_3068175495
crossref_citationtrail_10_1109_LGRS_2024_3407101
crossref_primary_10_1109_LGRS_2024_3407101
ieee_primary_10542523
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.3390/info9090229
– ident: ref1
  doi: 10.1109/iceet1.2018.8338621
– ident: ref4
  doi: 10.3390/ijgi9040254
– ident: ref5
  doi: 10.3390/rs15194860
– ident: ref14
  doi: 10.1109/TCSVT.2019.2890966
– ident: ref2
  doi: 10.1088/1757-899x/322/5/052055
– ident: ref8
  doi: 10.1109/TGRS.2020.3035676
– ident: ref9
  doi: 10.1007/s41651-019-0039-9
– ident: ref10
  doi: 10.48550/ARXIV.1807.06521
– ident: ref11
  doi: 10.1080/2150704X.2018.1504334
– ident: ref15
  doi: 10.1109/TCSVT.2020.3047142
– ident: ref6
  doi: 10.3390/ijgi9080485
– ident: ref12
  doi: 10.1145/1869790.1869829
– ident: ref7
  doi: 10.3390/rs13245109
– ident: ref13
  doi: 10.1109/TMM.2020.2999188
SSID ssj0024887
Score 2.3825529
Snippet For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Authentication
CBAM
Construction
Deep learning
Feature extraction
High resolution
high-resolution remote sensing (HRRS) image
Image coding
Image resolution
Integrity
integrity authentication
Machine learning
Remote sensing
Robustness
Sensitivity
subject-sensitive hashing
Training
Title Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication
URI https://ieeexplore.ieee.org/document/10542523
https://www.proquest.com/docview/3068175495
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxQxDLZoJdRegL7EQkE5cKqUbWYm88gRAe22gj30Ie1tlGQcVWq7rWD3UH49dpIFBCriNgdnFOlzHNux_QG8U1XdhtCgVF1opLYapbNNKU3nQ-Ww8EXD_c5fps3kUp_O6lluVo-9MIgYi89wzJ_xLX-480tOldEJr0nFymoN1ihyS81avwbrdZENj10CWZtulp8wC2UOPx-fnVMoWOpxxfFLJoBZXUKRVeUvUxzvl6PnMF3tLJWVXI-XCzf23_8Y2vjfW38Bz7KnKd4n1diCJzjfho1Men71sA1PjyOr78MOXH1EvBdkQzgpI8-5pp2toJgkpiUxTbXighxcwYUhkpP-SWXFGRLYKOIiEj25JQMlTuIQCnLwBafguCApZQZ34fLo08WHicwUDNKXRi-kbtuaoFQWrQloy6EyPKLPFb7qButtKLmJwdm6skPwWllyQLuydQq9RkMX5B6sz-_m-BKEC6oZ6so4HYIuHAUyvuUSADQeg1F-BGqFSe_zfHKmybjpY5yiTM8w9gxjn2EcwcHPJfdpOMe_hHcZlt8EEyIj2F8h3-fz-62nQKojx4qix1ePLHsNm_z3lI3Zh_XF1yW-If9k4d5GvfwBgsTh9w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BEWovPEoRgQI-cEJy8O56Hz4ioE0gzaEPKbeV7R2rUiGtSnIov54Z2wEEAnHbg6219I3n5Zn5AF6pqm5DaFCqLjRSW43S2aaUpvOhclj4ouF-56N5MznTHxf1Ijerx14YRIzFZzjmz_iWP1z6NafK6IbXJGJldRvukOGvy9Su9XO0Xhf58NgpkLXpFvkRs1Dmzezw-ISCwVKPK45gMgXMxgxFXpU_lHG0MAf3Yb45WyosuRivV27sv_02tvG_D_8A7mVfU7xNwvEQbuFyF7Yz7fn5zS7cPYy8vjeP4Pw94pUgLcJpGXnCVe2sB8UkcS2JeaoWF-TiCi4NkZz2T0IrjpHgRhE30dLpF1JRYhrHUJCLLzgJxyVJKTe4B2cHH07fTWQmYZC-NHolddvWBKayaE1AWw6V4SF9rvBVN1hvQ8ltDM7WlR2C18qSC9qVrVPoNRoykY9ha3m5xCcgXFDNUFfG6RB04SiU8S0XAaDxGIzyI1AbTHqfJ5QzUcbnPkYqyvQMY88w9hnGEbz-seUqjef41-I9huWXhQmREexvkO_zDf7aUyjVkWtF8ePTv2x7CduT06NZP5vOPz2DHf5Tys3sw9bqeo3PyVtZuRdRRr8DdsHlQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Subject-Sensitive+Hashing+Network+for+High-Resolution+Remote+Sensing+Image+Integrity+Authentication&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Xu%2C+Dingjie&rft.au=Chen%2C+Sheng&rft.au=Zhu%2C+Changqing&rft.au=Li%2C+Hui&rft.date=2024&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3407101&rft.externalDocID=10542523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon