Deep Subject-Sensitive Hashing Network for High-Resolution Remote Sensing Image Integrity Authentication
For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS imag...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | For ensuring the integrity of high-resolution remote sensing (HRRS) images, the perceptual hash method offers a dual advantage. It preserves the nondestructive nature of the original image while also ensuring robustness to content-preserving operations. However, current deep learning-based HRRS image hashing methods for integrity authentication are notably limited as they terminate at the feature extraction stage and fail to achieve an end-to-end construction from image to hash value. Consequently, there is a looming risk of uncontrollability and unexpected events. To overcome this problem, this letter proposes a deep subject-sensitive hashing network (DSSHN), presenting a unified network for end-to-end feature extraction and hash construction. Improved convolutional block attention module (I-CBAM) helps the network to focus more on subject-sensitive features. A targeted training scheme ensures perceptual hash robustness. The experimental results reveal that the algorithm achieves the best tampering detection performance, with top AUC (0.994) and leading precision and recall rates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2024.3407101 |