Heterogeneous Differential-Private Federated Learning: Trading Privacy for Utility Truthfully

Differential-private federated learning (DP-FL) has emerged to prevent privacy leakage when disclosing encoded sensitive information in model parameters. However, the existing DP-FL frameworks usually preserve privacy homogeneously across clients, while ignoring the different privacy attitudes and e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dependable and secure computing Vol. 20; no. 6; pp. 5113 - 5129
Main Authors Lin, Xi, Wu, Jun, Li, Jianhua, Sang, Chao, Hu, Shiyan, Deen, M. Jamal
Format Journal Article
LanguageEnglish
Published Washington IEEE 01.11.2023
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Differential-private federated learning (DP-FL) has emerged to prevent privacy leakage when disclosing encoded sensitive information in model parameters. However, the existing DP-FL frameworks usually preserve privacy homogeneously across clients, while ignoring the different privacy attitudes and expectations. Meanwhile, DP-FL is hard to guarantee that uncontrollable clients (i.e., stragglers) have truthfully added the expected DP noise. To tackle these challenges, we propose a heterogeneous differential-private federated learning framework, named HDP-FL, which captures the variation of privacy attitudes with truthful incentives. First, we investigate the impact of the HDP noise on the theoretical convergence of FL, showing a tradeoff between privacy loss and learning performance. Then, based on the privacy-utility tradeoff, we design a contract-based incentive mechanism, which encourages clients to truthfully reveal private attitudes and contribute to learning as desired. In particular, clients are classified into different privacy preference types and the optimal privacy-price contracts in the discrete-privacy-type model and continuous-privacy-type model are derived. Our extensive experiments with real datasets demonstrate that HDP-FL can maintain satisfactory learning performance while considering different privacy attitudes, which also validate the truthfulness, individual rationality, and effectiveness of our incentives.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-5971
1941-0018
DOI:10.1109/TDSC.2023.3241057