HiFlash: Communication-Efficient Hierarchical Federated Learning With Adaptive Staleness Control and Heterogeneity-Aware Client-Edge Association

Federated learning (FL) is a promising paradigm that enables collaboratively learning a shared model across massive clients while keeping the training data locally. However, for many existing FL systems, clients need to frequently exchange model parameters of large data size with the remote cloud se...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 34; no. 5; pp. 1560 - 1579
Main Authors Wu, Qiong, Chen, Xu, Ouyang, Tao, Zhou, Zhi, Zhang, Xiaoxi, Yang, Shusen, Zhang, Junshan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Federated learning (FL) is a promising paradigm that enables collaboratively learning a shared model across massive clients while keeping the training data locally. However, for many existing FL systems, clients need to frequently exchange model parameters of large data size with the remote cloud server directly via wide-area networks (WAN), leading to significant communication overhead and long transmission time. To mitigate the communication bottleneck, we resort to the hierarchical federated learning paradigm of HiFL, which reaps the benefits of mobile edge computing and combines synchronous client-edge model aggregation and asynchronous edge-cloud model aggregation together to greatly reduce the traffic volumes of WAN transmissions. Specifically, we first analyze the convergence bound of HiFL theoretically and identify the key controllable factors for model performance improvement. We then advocate an enhanced design of HiFlash by innovatively integrating deep reinforcement learning based adaptive staleness control and heterogeneity-aware client-edge association strategy to boost the system efficiency and mitigate the staleness effect without compromising model accuracy. Extensive experiments corroborate the superior performance of HiFlash in model accuracy, communication reduction, and system efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2023.3238049