IIsy: Hybrid In-Network Classification Using Programmable Switches
The soaring use of machine learning leads to increasing processing demands. As data volume keeps growing, providing classification services with good machine learning performance, high throughput, low latency, and minimal equipment overheads becomes a challenge. Offloading machine learning tasks to...
Saved in:
Published in | IEEE/ACM transactions on networking Vol. 32; no. 3; pp. 2555 - 2570 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The soaring use of machine learning leads to increasing processing demands. As data volume keeps growing, providing classification services with good machine learning performance, high throughput, low latency, and minimal equipment overheads becomes a challenge. Offloading machine learning tasks to network switches can be a scalable solution to this problem, providing high throughput and low latency. However, network devices are resource constrained, and lack support for machine learning functionality. In this paper, we introduce IIsy - a novel mapping tool of machine learning classification models to off-the-shelf switches. Using an efficient encoding algorithm, IIsy enables fitting a range of classification models on switches, co-existing with standard switch functionality. To overcome resource constraints, IIsy adopts a hybrid approach for ensemble models, running a small model on a switch and a large model on the backend. The evaluation shows that IIsy achieves near-optimal classification results, within minimum resource overheads, and while reducing the load on the backend by 70% for data-intensive use cases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1063-6692 1558-2566 |
DOI: | 10.1109/TNET.2024.3364757 |