Experimental Investigation and Mechanism of Fly Ash/Slag-Based Geopolymer-Stabilized Soft Soil

In response to the high carbon emissions and energy consumption of traditional cement curing agents, in this paper, we propose a fly ash/slag-based geopolymer as an alternative to cement for stabilizing soft soils. In this study, the effects of the activator modulus, activator, and slag content on t...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 15; p. 7438
Main Authors Wu, Dazhi, Zhang, Zilong, Chen, Keyu, Xia, Linling
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In response to the high carbon emissions and energy consumption of traditional cement curing agents, in this paper, we propose a fly ash/slag-based geopolymer as an alternative to cement for stabilizing soft soils. In this study, the effects of the activator modulus, activator, and slag content on the geopolymer-stabilized clay were investigated by unconfined compressive strength (UCS) tests on Hangzhou soft soils, and the water stability and resistance to wet–dry cycles of the geopolymer-stabilized soils were studied. The changes in the microstructure and mineral phases were investigated using X-ray diffraction and scanning electron microscopy, respectively, and the inner evolution of the properties of the stabilized soft soil under different conditions was clarified. The test results revealed that the UCS of the geopolymer-stabilized soft soils increased and then decreased as the content and modulus of the alkali activator increased. The optimum mix proportion of geopolymer-stabilized soil required a modulus of the alkali activator of 0.6, a content of the alkali activator of 6%, and a slag-to-fly ash ratio of 1:1. Its 28-day UCS of the test specimens reached 2 MPa. When the content of the geopolymer was 25%, the water stability coefficient reached 87.53%, and the strength was still 1.6 MPa after eight wet–dry cycles. Based on the microscopic analysis, the cementing substances in the geopolymer-stabilized clay were calcium silicate hydrate (C-S-H) and sodium aluminosilicate hydrate (N-A-S-H), which made the soil’s structure denser through bonding and filling effects.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12157438