Numerical analysis of stagger Supersonic biplane at off-design condition with trailing edge flap
Supersonic biplanes can achieve low-boom and low-drag supersonic flights. In the present study, aerodynamic analysis of a two-dimensional stagger Bussmann biplane (staggered upper element by 0.5c) at zero degrees angle of attack with trailing edge flap was investigated with the help of computational...
Saved in:
Published in | FME transactions Vol. 51; no. 2; pp. 253 - 261 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
University of Belgrade - Faculty of Mechanical Engineering, Belgrade
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Supersonic biplanes can achieve low-boom and low-drag supersonic flights. In the present study, aerodynamic analysis of a two-dimensional stagger Bussmann biplane (staggered upper element by 0.5c) at zero degrees angle of attack with trailing edge flap was investigated with the help of computational fluid dynamics (CFD) tools. Due to the wave cancellation effect, the Busemann biplane delivers a positive drag reduction at design supersonic Mach values. However, when operating outside of its intended parameters, it performs worse, and the wave cancellation effect has no beneficial effects on reducing drag. Another issue with the Busemann biplane is flow chocking, which produces a potent bow shock wave in front of the aircraft. This paper attempts to address low aerodynamics efficiency problems during take-off through numerical simulation of a staggered Busemann biplane with trailing edge flaps at zero degrees angle of attack. It was confirmed that the staggered biplane airfoil with flap has better aerodynamic performance during take-off at lower subsonic free stream Mach numbers. In 2D wings, the effect of flow chocking and hysteresis as starting problems, which arise when the biplanes accelerate from low Mach numbers, is reduced by using the suitable dimension and angle of rotation of the flap, and the flap is effective in settling these issues. |
---|---|
ISSN: | 1451-2092 2406-128X |
DOI: | 10.5937/fme2302253P |