Testing the effects of footwear on biomechanics of human body: A review
Studies show the high potential of shoes to impact human movement and reduce the risk of injuries during normal and high-demanding activities. This review will delve into the existing literature on mechanical and biomechanical tests of shoes and their effects on the human body. Mechanical tests main...
Saved in:
Published in | Heliyon Vol. 11; no. 4; p. e42870 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
28.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Studies show the high potential of shoes to impact human movement and reduce the risk of injuries during normal and high-demanding activities. This review will delve into the existing literature on mechanical and biomechanical tests of shoes and their effects on the human body. Mechanical tests mainly include compression, bending, torsional flexibility, and impact tests. Biomechanical tests, on the other hand, study the kinematics and kinetics of the human body while performing different tasks. The primary goal of this review is to highlight the importance of isolating parameters in shoe design and testing to achieve optimal results in providing comfort, support, and injury prevention. Key conclusions include the influence of lattice structures on shoe stiffness and stress distribution, the effectiveness of composite loofah sponge for vibration damping, the benefits of Poron insoles for impact attenuation, the potential injury risk reduction with auxetic shoes, and the need for future research on mechanical tests, parameter investigation, and optimization of shoe sole structures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2025.e42870 |