Collaborative Learning of Communication Routes in Edge-Enabled Multi-Access Vehicular Environment

Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-acc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 6; no. 4; pp. 1155 - 1165
Main Authors Wu, Celimuge, Liu, Zhi, Liu, Fuqiang, Yoshinaga, Tsutomu, Ji, Yusheng, Li, Jie
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2020.3002253

Cover

Abstract Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-access vehicular environment is an underexplored research problem. In this paper, we propose a collaborative learning-based routing scheme for multi-access vehicular edge computing environment. The proposed scheme employs a reinforcement learning algorithm based on end-edge-cloud collaboration to find routes in a proactive manner with a low communication overhead. The routes are also preemptively changed based on the learned information. By integrating the "proactive" and "preemptive" approach, the proposed scheme can achieve a better forwarding of packets as compared with existing alternatives. We conduct extensive and realistic computer simulations to show the performance advantage of the proposed scheme over existing baselines.
AbstractList Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-access vehicular environment is an underexplored research problem. In this paper, we propose a collaborative learning-based routing scheme for multi-access vehicular edge computing environment. The proposed scheme employs a reinforcement learning algorithm based on end-edge-cloud collaboration to find routes in a proactive manner with a low communication overhead. The routes are also preemptively changed based on the learned information. By integrating the "proactive" and "preemptive" approach, the proposed scheme can achieve a better forwarding of packets as compared with existing alternatives. We conduct extensive and realistic computer simulations to show the performance advantage of the proposed scheme over existing baselines.
Author Ji, Yusheng
Wu, Celimuge
Liu, Zhi
Yoshinaga, Tsutomu
Li, Jie
Liu, Fuqiang
Author_xml – sequence: 1
  givenname: Celimuge
  orcidid: 0000-0001-6853-5878
  surname: Wu
  fullname: Wu, Celimuge
  email: celimuge@uec.ac.jp
  organization: Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
– sequence: 2
  givenname: Zhi
  orcidid: 0000-0003-0537-4522
  surname: Liu
  fullname: Liu, Zhi
  email: liu@ieee.org
  organization: Department of Mathematical and Systems Engineering, Shizuoka University, Shizuoka, Japan
– sequence: 3
  givenname: Fuqiang
  surname: Liu
  fullname: Liu, Fuqiang
  email: liufuqiang@tongji.edu.cn
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai, China
– sequence: 4
  givenname: Tsutomu
  orcidid: 0000-0002-5238-8938
  surname: Yoshinaga
  fullname: Yoshinaga, Tsutomu
  email: yoshinaga@uec.ac.jp
  organization: Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
– sequence: 5
  givenname: Yusheng
  orcidid: 0000-0003-4364-8491
  surname: Ji
  fullname: Ji, Yusheng
  email: kei@nii.ac.jp
  organization: Information Systems Architecture Research Division, National Institute of Informatics, Tokyo, Japan
– sequence: 6
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  email: lijiecs@sjtu.edu.cn
  organization: Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China
BookMark eNp9kE1rGzEQhkVJoPnwDyi9CHpeZ0aypdUxLE4TcBsITq6LLM2mCmsplXYN_fddx6GUHnqagXmfGeY5ZycxRWLsE8IcEczVpmm-zwUImEsAIZbyAzsTUopKa4knf_Uf2ayUFwBAJZSqF2fMNqnv7TZlO4Q98TXZHEN85qnjTdrtxhjcNEmRP6RxoMJD5Cv_TNUq2m1Pnn8b-yFU185RKfyJfgQ39jbzVdyHnOKO4nDJTjvbF5q91wv2eLPaNLfV-v7rXXO9rpwwcqi6GqwwtXJd7bwyYNAvTW2889L4hSFNsEULpDvtJ8CgEKBxqchqrzrU8oJ9Oe59zennSGVoX9KY43SyFQtVa4WAOKX0MeVyKiVT17owvH04ZBv6FqE9KG0PStuD0vZd6UTiP-RrDjubf_2X-XxkAhH9yRtEDXIhfwMuqYM-
CODEN ITCCG7
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3036399
crossref_primary_10_1016_j_future_2024_107703
crossref_primary_10_1109_JIOT_2021_3061467
crossref_primary_10_1109_TVT_2021_3076304
crossref_primary_10_1142_S0218126625300016
crossref_primary_10_1109_ACCESS_2021_3111321
crossref_primary_10_1109_TITS_2021_3114199
crossref_primary_10_1109_TGCN_2022_3186314
crossref_primary_10_1155_2022_3469221
crossref_primary_10_1155_2022_1377225
crossref_primary_10_1109_ACCESS_2021_3105750
crossref_primary_10_1155_2021_8952219
crossref_primary_10_1109_ACCESS_2022_3147498
crossref_primary_10_1016_j_adhoc_2022_102996
crossref_primary_10_1016_j_future_2022_10_006
crossref_primary_10_1109_ACCESS_2022_3206359
crossref_primary_10_1145_3491388
crossref_primary_10_3390_s22186995
crossref_primary_10_1109_IOTM_001_2300080
crossref_primary_10_1109_TGCN_2022_3191699
crossref_primary_10_1016_j_future_2022_10_004
crossref_primary_10_1109_ACCESS_2021_3106284
crossref_primary_10_1002_cpe_8222
crossref_primary_10_3390_info14080445
crossref_primary_10_1109_TGCN_2022_3188026
crossref_primary_10_26599_TST_2023_9010083
crossref_primary_10_3390_vehicles4040065
crossref_primary_10_1109_JIOT_2021_3065970
crossref_primary_10_1109_TITS_2024_3491168
crossref_primary_10_1109_TVT_2022_3189019
crossref_primary_10_1016_j_trpro_2025_03_061
crossref_primary_10_1155_2022_8374181
crossref_primary_10_1109_ACCESS_2021_3063246
crossref_primary_10_1155_sec_8882649
crossref_primary_10_1109_ACCESS_2024_3376607
crossref_primary_10_1155_2021_6666211
crossref_primary_10_1109_TGCN_2022_3219111
crossref_primary_10_3390_s24103001
crossref_primary_10_1109_ACCESS_2022_3208243
crossref_primary_10_1109_JSYST_2022_3190926
crossref_primary_10_1109_TITS_2020_3024186
crossref_primary_10_3390_e25050792
crossref_primary_10_1109_OJCS_2023_3238324
crossref_primary_10_1109_TGCN_2022_3193849
crossref_primary_10_1109_ACCESS_2021_3090438
crossref_primary_10_1109_JIOT_2023_3302805
crossref_primary_10_1109_JIOT_2020_3016019
crossref_primary_10_1109_JIOT_2021_3121796
crossref_primary_10_1109_TGCN_2022_3187463
crossref_primary_10_1109_TITS_2021_3122438
crossref_primary_10_3390_vehicles5040080
crossref_primary_10_1109_TGCN_2022_3185045
crossref_primary_10_3390_electronics12153254
crossref_primary_10_1109_OJCS_2021_3070714
crossref_primary_10_1109_TVT_2024_3456964
crossref_primary_10_1109_TITS_2020_3035841
crossref_primary_10_3390_computers12080162
crossref_primary_10_1109_TCCN_2021_3136221
crossref_primary_10_1109_ACCESS_2021_3120618
crossref_primary_10_1109_TGCN_2021_3130075
crossref_primary_10_1145_3625544
crossref_primary_10_1016_j_sysarc_2021_102331
crossref_primary_10_1109_TVT_2021_3133291
crossref_primary_10_1016_j_future_2022_10_028
crossref_primary_10_1016_j_future_2022_10_029
crossref_primary_10_1109_TVT_2024_3380582
crossref_primary_10_1109_JIOT_2022_3228818
crossref_primary_10_1007_s12083_021_01252_w
crossref_primary_10_1109_TGCN_2022_3191313
crossref_primary_10_1109_TR_2022_3159664
crossref_primary_10_1016_j_hcc_2024_100225
crossref_primary_10_1109_TGCN_2022_3167643
crossref_primary_10_1109_TGCN_2022_3193996
crossref_primary_10_1016_j_future_2022_10_012
crossref_primary_10_1109_TGCN_2022_3187077
crossref_primary_10_1016_j_future_2022_07_011
crossref_primary_10_1016_j_jnca_2021_103259
crossref_primary_10_1186_s13634_022_00840_z
crossref_primary_10_3390_electronics14020393
crossref_primary_10_1016_j_future_2022_08_004
crossref_primary_10_23919_cje_2022_00_093
crossref_primary_10_1016_j_comcom_2022_05_014
crossref_primary_10_1109_OJCS_2021_3102045
crossref_primary_10_1109_ACCESS_2022_3155632
crossref_primary_10_1016_j_comnet_2024_110335
crossref_primary_10_1016_j_future_2022_10_018
Cites_doi 10.1109/MCI.2019.2937608
10.1109/TITS.2018.2889923
10.1109/ACCESS.2019.2938534
10.1109/TVT.2020.2965159
10.1109/MWC.2019.1800521
10.1109/TSUSC.2020.2971628
10.1109/MCOM.2018.1800089
10.1109/TITS.2018.2890619
10.1109/JIOT.2019.2945640
10.1109/ACCESS.2019.2962903
10.1109/MWC.2019.1800515
10.1109/MNET.2019.1800453
10.1109/TITS.2020.2970276
10.1109/ACCESS.2019.2961331
10.1109/TITS.2019.2922656
10.1109/TVT.2018.2867191
10.1109/TVT.2020.2970551
10.1587/transcom.E95.B.415
10.1109/TII.2018.2883991
10.1109/TWC.2019.2962798
10.1109/TVT.2017.2714704
10.1007/s11276-019-01974-z
10.1109/TVT.2018.2887282
10.1109/JIOT.2020.2966660
10.1109/JIOT.2020.2972061
10.1109/JIOT.2020.2972041
10.1109/TVT.2018.2824345
10.1109/TVT.2019.2954462
10.1109/JIOT.2019.2903245
10.1109/MVT.2018.2879647
10.1109/TVT.2013.2273945
10.1109/TIE.2015.2425364
10.1109/JIOT.2018.2876279
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCCN.2020.3002253
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 1165
ExternalDocumentID 10_1109_TCCN_2020_3002253
9117034
Genre orig-research
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 18KK0279; 19H04092; 20H04174; 19H04093
  funderid: 10.13039/501100001691
– fundername: Telecommunications Advanced Foundation, and ROIS NII Open Collaborative Research
  grantid: 2020-20FA02
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-f80a2986cf8cd69091d5989dcd39d49e7e0b1a0e7f7d293912207156ea7d6f173
IEDL.DBID RIE
ISSN 2332-7731
IngestDate Mon Jun 30 04:41:37 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Tue Jul 01 01:43:25 EDT 2025
Wed Aug 27 02:33:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f80a2986cf8cd69091d5989dcd39d49e7e0b1a0e7f7d293912207156ea7d6f173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0537-4522
0000-0002-5238-8938
0000-0003-4364-8491
0000-0001-6853-5878
PQID 2468761011
PQPubID 4437218
PageCount 11
ParticipantIDs ieee_primary_9117034
proquest_journals_2468761011
crossref_citationtrail_10_1109_TCCN_2020_3002253
crossref_primary_10_1109_TCCN_2020_3002253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
he (ref5) 2018
ref24
ref23
ref26
ref25
(ref35) 2019
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref4
  doi: 10.1109/MCI.2019.2937608
– ident: ref29
  doi: 10.1109/TITS.2018.2889923
– ident: ref6
  doi: 10.1109/ACCESS.2019.2938534
– ident: ref16
  doi: 10.1109/TVT.2020.2965159
– ident: ref22
  doi: 10.1109/MWC.2019.1800521
– ident: ref25
  doi: 10.1109/TSUSC.2020.2971628
– ident: ref1
  doi: 10.1109/MCOM.2018.1800089
– ident: ref30
  doi: 10.1109/TITS.2018.2890619
– year: 2018
  ident: ref5
  article-title: Green resource allocation based on deep reinforcement learning in content-centric IoT
  publication-title: IEEE Trans Emerg Topics Comput
– ident: ref12
  doi: 10.1109/JIOT.2019.2945640
– ident: ref28
  doi: 10.1109/ACCESS.2019.2962903
– ident: ref32
  doi: 10.1109/MWC.2019.1800515
– ident: ref27
  doi: 10.1109/MNET.2019.1800453
– ident: ref18
  doi: 10.1109/TITS.2020.2970276
– ident: ref21
  doi: 10.1109/ACCESS.2019.2961331
– ident: ref24
  doi: 10.1109/TITS.2019.2922656
– ident: ref17
  doi: 10.1109/TVT.2018.2867191
– ident: ref19
  doi: 10.1109/TVT.2020.2970551
– ident: ref33
  doi: 10.1587/transcom.E95.B.415
– ident: ref8
  doi: 10.1109/TII.2018.2883991
– ident: ref20
  doi: 10.1109/TWC.2019.2962798
– ident: ref13
  doi: 10.1109/TVT.2017.2714704
– ident: ref2
  doi: 10.1007/s11276-019-01974-z
– ident: ref26
  doi: 10.1109/TVT.2018.2887282
– year: 2019
  ident: ref35
– ident: ref3
  doi: 10.1109/JIOT.2020.2966660
– ident: ref14
  doi: 10.1109/JIOT.2020.2972061
– ident: ref15
  doi: 10.1109/JIOT.2020.2972041
– ident: ref10
  doi: 10.1109/TVT.2018.2824345
– ident: ref31
  doi: 10.1109/TVT.2019.2954462
– ident: ref11
  doi: 10.1109/JIOT.2019.2903245
– ident: ref9
  doi: 10.1109/MVT.2018.2879647
– ident: ref34
  doi: 10.1109/TVT.2013.2273945
– ident: ref23
  doi: 10.1109/TIE.2015.2425364
– ident: ref7
  doi: 10.1109/JIOT.2018.2876279
SSID ssj0001626684
Score 2.5124428
Snippet Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1155
SubjectTerms Algorithms
Caching
Collaborative learning
Communication
Delays
Edge computing
fuzzy logic
Internet of Things
Machine learning
multi-access vehicular environment
Preempting
Quality of service
Reinforcement learning
Resource management
Routing
routing protocol
Task analysis
Vehicular networks
Title Collaborative Learning of Communication Routes in Edge-Enabled Multi-Access Vehicular Environment
URI https://ieeexplore.ieee.org/document/9117034
https://www.proquest.com/docview/2468761011
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLXGTnDgayAGA-XACdEtbZOmOU7VEELaThvarWobBxBoQ2zjwK8nSbuNAULceogrS8-J7cTPBriUNMs1Y5nnRyY3YVxoLzMKexxjJnOMtaCWKNwfRLcjdjfm4xpcr7gwiOiKz7BtP91bvpoWC3tV1pF2TErItmDLmFnJ1Vrfp5jIPIpZ9XDpU9kZJsnAJICByUutp-Lhhutxs1R-HMDOq9zsQX-pT1lM8txezPN28fGtVeN_Fd6H3Sq8JN3SHg6ghpND2PnSdLABWbKG_h1J1WD1gUw12WCLEFsshDPyNCE99YBez7GsFHGUXa_rBi2Se3x8cpWspLdmzB3B6KY3TG69atCCVxhvP_d0TLNAxlGh40KZdFn6istYqkKFUjGJAmnuZxSFFsoISD8ITGTCI8yEirQvwmOoT6YTPAFCA8V1GPBCaJ8JNIhopELSAHme5zxuAl1ikBZVF3I7DOMlddkIlamFLbWwpRVsTbhaibyWLTj-WtywMKwWVgg0obUEOq026SwNWGR8gTmT_NPfpc5g2_67rF5pQX3-tsBzE4PM8wtnfJ-1i9lY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhUpzEjuMRVUUF2k4FsUVJfC4VqEW0ZeDXYztpSwEhtgy2ctJn-7uz77sDOJM0zTRjqedHJjZhXGgvNQZ7HGMmM4y1oFYo3GpHjXt2-8gfF-BiqoVBRJd8hlX76d7y1SAf26uyS2nbpIRsEZYN7zNeqLVmNyrGN49iVj5d-lRedmq1tgkBAxOZWq7i4Rz5uG4qP45gxyvXG9CaWFSkkzxXx6Osmn98K9b4X5M3Yb10MMlVsSK2YAH727D2pezgDqS1GfjvSMoSq10y0GROL0JsuhAOSa9P6qqLXt3prBRxol3vyrVaJA_41HO5rKQ-08ztwv11vVNreGWrBS83fD_ydEzTQMZRruNcmYBZ-orLWKpchVIxiQJp5qcUhRbKTJB-EBjfhEeYChVpX4R7sNQf9HEfCA0U12HAc6F9JtAgopEKSQPkWZbxuAJ0gkGSl3XIbTuMl8TFI1QmFrbEwpaUsFXgfDrltSjC8dfgHQvDdGCJQAWOJkAn5TYdJgGLDBuYU8k_-H3WKaw0Oq1m0rxp3x3Cqv1PkctyBEujtzEeG49klJ24hfgJP13cpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning+of+Communication+Routes+in+Edge-Enabled+Multi-Access+Vehicular+Environment&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Wu%2C+Celimuge&rft.au=Liu%2C+Zhi&rft.au=Liu%2C+Fuqiang&rft.au=Yoshinaga%2C+Tsutomu&rft.date=2020-12-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=6&rft.issue=4&rft.spage=1155&rft.epage=1165&rft_id=info:doi/10.1109%2FTCCN.2020.3002253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2020_3002253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon