Collaborative Learning of Communication Routes in Edge-Enabled Multi-Access Vehicular Environment
Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-acc...
Saved in:
Published in | IEEE transactions on cognitive communications and networking Vol. 6; no. 4; pp. 1155 - 1165 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2332-7731 2332-7731 |
DOI | 10.1109/TCCN.2020.3002253 |
Cover
Abstract | Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-access vehicular environment is an underexplored research problem. In this paper, we propose a collaborative learning-based routing scheme for multi-access vehicular edge computing environment. The proposed scheme employs a reinforcement learning algorithm based on end-edge-cloud collaboration to find routes in a proactive manner with a low communication overhead. The routes are also preemptively changed based on the learned information. By integrating the "proactive" and "preemptive" approach, the proposed scheme can achieve a better forwarding of packets as compared with existing alternatives. We conduct extensive and realistic computer simulations to show the performance advantage of the proposed scheme over existing baselines. |
---|---|
AbstractList | Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-access vehicular environment is an underexplored research problem. In this paper, we propose a collaborative learning-based routing scheme for multi-access vehicular edge computing environment. The proposed scheme employs a reinforcement learning algorithm based on end-edge-cloud collaboration to find routes in a proactive manner with a low communication overhead. The routes are also preemptively changed based on the learned information. By integrating the "proactive" and "preemptive" approach, the proposed scheme can achieve a better forwarding of packets as compared with existing alternatives. We conduct extensive and realistic computer simulations to show the performance advantage of the proposed scheme over existing baselines. |
Author | Ji, Yusheng Wu, Celimuge Liu, Zhi Yoshinaga, Tsutomu Li, Jie Liu, Fuqiang |
Author_xml | – sequence: 1 givenname: Celimuge orcidid: 0000-0001-6853-5878 surname: Wu fullname: Wu, Celimuge email: celimuge@uec.ac.jp organization: Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan – sequence: 2 givenname: Zhi orcidid: 0000-0003-0537-4522 surname: Liu fullname: Liu, Zhi email: liu@ieee.org organization: Department of Mathematical and Systems Engineering, Shizuoka University, Shizuoka, Japan – sequence: 3 givenname: Fuqiang surname: Liu fullname: Liu, Fuqiang email: liufuqiang@tongji.edu.cn organization: School of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 4 givenname: Tsutomu orcidid: 0000-0002-5238-8938 surname: Yoshinaga fullname: Yoshinaga, Tsutomu email: yoshinaga@uec.ac.jp organization: Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan – sequence: 5 givenname: Yusheng orcidid: 0000-0003-4364-8491 surname: Ji fullname: Ji, Yusheng email: kei@nii.ac.jp organization: Information Systems Architecture Research Division, National Institute of Informatics, Tokyo, Japan – sequence: 6 givenname: Jie surname: Li fullname: Li, Jie email: lijiecs@sjtu.edu.cn organization: Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China |
BookMark | eNp9kE1rGzEQhkVJoPnwDyi9CHpeZ0aypdUxLE4TcBsITq6LLM2mCmsplXYN_fddx6GUHnqagXmfGeY5ZycxRWLsE8IcEczVpmm-zwUImEsAIZbyAzsTUopKa4knf_Uf2ayUFwBAJZSqF2fMNqnv7TZlO4Q98TXZHEN85qnjTdrtxhjcNEmRP6RxoMJD5Cv_TNUq2m1Pnn8b-yFU185RKfyJfgQ39jbzVdyHnOKO4nDJTjvbF5q91wv2eLPaNLfV-v7rXXO9rpwwcqi6GqwwtXJd7bwyYNAvTW2889L4hSFNsEULpDvtJ8CgEKBxqchqrzrU8oJ9Oe59zennSGVoX9KY43SyFQtVa4WAOKX0MeVyKiVT17owvH04ZBv6FqE9KG0PStuD0vZd6UTiP-RrDjubf_2X-XxkAhH9yRtEDXIhfwMuqYM- |
CODEN | ITCCG7 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3036399 crossref_primary_10_1016_j_future_2024_107703 crossref_primary_10_1109_JIOT_2021_3061467 crossref_primary_10_1109_TVT_2021_3076304 crossref_primary_10_1142_S0218126625300016 crossref_primary_10_1109_ACCESS_2021_3111321 crossref_primary_10_1109_TITS_2021_3114199 crossref_primary_10_1109_TGCN_2022_3186314 crossref_primary_10_1155_2022_3469221 crossref_primary_10_1155_2022_1377225 crossref_primary_10_1109_ACCESS_2021_3105750 crossref_primary_10_1155_2021_8952219 crossref_primary_10_1109_ACCESS_2022_3147498 crossref_primary_10_1016_j_adhoc_2022_102996 crossref_primary_10_1016_j_future_2022_10_006 crossref_primary_10_1109_ACCESS_2022_3206359 crossref_primary_10_1145_3491388 crossref_primary_10_3390_s22186995 crossref_primary_10_1109_IOTM_001_2300080 crossref_primary_10_1109_TGCN_2022_3191699 crossref_primary_10_1016_j_future_2022_10_004 crossref_primary_10_1109_ACCESS_2021_3106284 crossref_primary_10_1002_cpe_8222 crossref_primary_10_3390_info14080445 crossref_primary_10_1109_TGCN_2022_3188026 crossref_primary_10_26599_TST_2023_9010083 crossref_primary_10_3390_vehicles4040065 crossref_primary_10_1109_JIOT_2021_3065970 crossref_primary_10_1109_TITS_2024_3491168 crossref_primary_10_1109_TVT_2022_3189019 crossref_primary_10_1016_j_trpro_2025_03_061 crossref_primary_10_1155_2022_8374181 crossref_primary_10_1109_ACCESS_2021_3063246 crossref_primary_10_1155_sec_8882649 crossref_primary_10_1109_ACCESS_2024_3376607 crossref_primary_10_1155_2021_6666211 crossref_primary_10_1109_TGCN_2022_3219111 crossref_primary_10_3390_s24103001 crossref_primary_10_1109_ACCESS_2022_3208243 crossref_primary_10_1109_JSYST_2022_3190926 crossref_primary_10_1109_TITS_2020_3024186 crossref_primary_10_3390_e25050792 crossref_primary_10_1109_OJCS_2023_3238324 crossref_primary_10_1109_TGCN_2022_3193849 crossref_primary_10_1109_ACCESS_2021_3090438 crossref_primary_10_1109_JIOT_2023_3302805 crossref_primary_10_1109_JIOT_2020_3016019 crossref_primary_10_1109_JIOT_2021_3121796 crossref_primary_10_1109_TGCN_2022_3187463 crossref_primary_10_1109_TITS_2021_3122438 crossref_primary_10_3390_vehicles5040080 crossref_primary_10_1109_TGCN_2022_3185045 crossref_primary_10_3390_electronics12153254 crossref_primary_10_1109_OJCS_2021_3070714 crossref_primary_10_1109_TVT_2024_3456964 crossref_primary_10_1109_TITS_2020_3035841 crossref_primary_10_3390_computers12080162 crossref_primary_10_1109_TCCN_2021_3136221 crossref_primary_10_1109_ACCESS_2021_3120618 crossref_primary_10_1109_TGCN_2021_3130075 crossref_primary_10_1145_3625544 crossref_primary_10_1016_j_sysarc_2021_102331 crossref_primary_10_1109_TVT_2021_3133291 crossref_primary_10_1016_j_future_2022_10_028 crossref_primary_10_1016_j_future_2022_10_029 crossref_primary_10_1109_TVT_2024_3380582 crossref_primary_10_1109_JIOT_2022_3228818 crossref_primary_10_1007_s12083_021_01252_w crossref_primary_10_1109_TGCN_2022_3191313 crossref_primary_10_1109_TR_2022_3159664 crossref_primary_10_1016_j_hcc_2024_100225 crossref_primary_10_1109_TGCN_2022_3167643 crossref_primary_10_1109_TGCN_2022_3193996 crossref_primary_10_1016_j_future_2022_10_012 crossref_primary_10_1109_TGCN_2022_3187077 crossref_primary_10_1016_j_future_2022_07_011 crossref_primary_10_1016_j_jnca_2021_103259 crossref_primary_10_1186_s13634_022_00840_z crossref_primary_10_3390_electronics14020393 crossref_primary_10_1016_j_future_2022_08_004 crossref_primary_10_23919_cje_2022_00_093 crossref_primary_10_1016_j_comcom_2022_05_014 crossref_primary_10_1109_OJCS_2021_3102045 crossref_primary_10_1109_ACCESS_2022_3155632 crossref_primary_10_1016_j_comnet_2024_110335 crossref_primary_10_1016_j_future_2022_10_018 |
Cites_doi | 10.1109/MCI.2019.2937608 10.1109/TITS.2018.2889923 10.1109/ACCESS.2019.2938534 10.1109/TVT.2020.2965159 10.1109/MWC.2019.1800521 10.1109/TSUSC.2020.2971628 10.1109/MCOM.2018.1800089 10.1109/TITS.2018.2890619 10.1109/JIOT.2019.2945640 10.1109/ACCESS.2019.2962903 10.1109/MWC.2019.1800515 10.1109/MNET.2019.1800453 10.1109/TITS.2020.2970276 10.1109/ACCESS.2019.2961331 10.1109/TITS.2019.2922656 10.1109/TVT.2018.2867191 10.1109/TVT.2020.2970551 10.1587/transcom.E95.B.415 10.1109/TII.2018.2883991 10.1109/TWC.2019.2962798 10.1109/TVT.2017.2714704 10.1007/s11276-019-01974-z 10.1109/TVT.2018.2887282 10.1109/JIOT.2020.2966660 10.1109/JIOT.2020.2972061 10.1109/JIOT.2020.2972041 10.1109/TVT.2018.2824345 10.1109/TVT.2019.2954462 10.1109/JIOT.2019.2903245 10.1109/MVT.2018.2879647 10.1109/TVT.2013.2273945 10.1109/TIE.2015.2425364 10.1109/JIOT.2018.2876279 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCCN.2020.3002253 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2332-7731 |
EndPage | 1165 |
ExternalDocumentID | 10_1109_TCCN_2020_3002253 9117034 |
Genre | orig-research |
GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 18KK0279; 19H04092; 20H04174; 19H04093 funderid: 10.13039/501100001691 – fundername: Telecommunications Advanced Foundation, and ROIS NII Open Collaborative Research grantid: 2020-20FA02 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-f80a2986cf8cd69091d5989dcd39d49e7e0b1a0e7f7d293912207156ea7d6f173 |
IEDL.DBID | RIE |
ISSN | 2332-7731 |
IngestDate | Mon Jun 30 04:41:37 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Wed Aug 27 02:33:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f80a2986cf8cd69091d5989dcd39d49e7e0b1a0e7f7d293912207156ea7d6f173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0537-4522 0000-0002-5238-8938 0000-0003-4364-8491 0000-0001-6853-5878 |
PQID | 2468761011 |
PQPubID | 4437218 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9117034 proquest_journals_2468761011 crossref_citationtrail_10_1109_TCCN_2020_3002253 crossref_primary_10_1109_TCCN_2020_3002253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive communications and networking |
PublicationTitleAbbrev | TCCN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 he (ref5) 2018 ref24 ref23 ref26 ref25 (ref35) 2019 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 |
References_xml | – ident: ref4 doi: 10.1109/MCI.2019.2937608 – ident: ref29 doi: 10.1109/TITS.2018.2889923 – ident: ref6 doi: 10.1109/ACCESS.2019.2938534 – ident: ref16 doi: 10.1109/TVT.2020.2965159 – ident: ref22 doi: 10.1109/MWC.2019.1800521 – ident: ref25 doi: 10.1109/TSUSC.2020.2971628 – ident: ref1 doi: 10.1109/MCOM.2018.1800089 – ident: ref30 doi: 10.1109/TITS.2018.2890619 – year: 2018 ident: ref5 article-title: Green resource allocation based on deep reinforcement learning in content-centric IoT publication-title: IEEE Trans Emerg Topics Comput – ident: ref12 doi: 10.1109/JIOT.2019.2945640 – ident: ref28 doi: 10.1109/ACCESS.2019.2962903 – ident: ref32 doi: 10.1109/MWC.2019.1800515 – ident: ref27 doi: 10.1109/MNET.2019.1800453 – ident: ref18 doi: 10.1109/TITS.2020.2970276 – ident: ref21 doi: 10.1109/ACCESS.2019.2961331 – ident: ref24 doi: 10.1109/TITS.2019.2922656 – ident: ref17 doi: 10.1109/TVT.2018.2867191 – ident: ref19 doi: 10.1109/TVT.2020.2970551 – ident: ref33 doi: 10.1587/transcom.E95.B.415 – ident: ref8 doi: 10.1109/TII.2018.2883991 – ident: ref20 doi: 10.1109/TWC.2019.2962798 – ident: ref13 doi: 10.1109/TVT.2017.2714704 – ident: ref2 doi: 10.1007/s11276-019-01974-z – ident: ref26 doi: 10.1109/TVT.2018.2887282 – year: 2019 ident: ref35 – ident: ref3 doi: 10.1109/JIOT.2020.2966660 – ident: ref14 doi: 10.1109/JIOT.2020.2972061 – ident: ref15 doi: 10.1109/JIOT.2020.2972041 – ident: ref10 doi: 10.1109/TVT.2018.2824345 – ident: ref31 doi: 10.1109/TVT.2019.2954462 – ident: ref11 doi: 10.1109/JIOT.2019.2903245 – ident: ref9 doi: 10.1109/MVT.2018.2879647 – ident: ref34 doi: 10.1109/TVT.2013.2273945 – ident: ref23 doi: 10.1109/TIE.2015.2425364 – ident: ref7 doi: 10.1109/JIOT.2018.2876279 |
SSID | ssj0001626684 |
Score | 2.5124428 |
Snippet | Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1155 |
SubjectTerms | Algorithms Caching Collaborative learning Communication Delays Edge computing fuzzy logic Internet of Things Machine learning multi-access vehicular environment Preempting Quality of service Reinforcement learning Resource management Routing routing protocol Task analysis Vehicular networks |
Title | Collaborative Learning of Communication Routes in Edge-Enabled Multi-Access Vehicular Environment |
URI | https://ieeexplore.ieee.org/document/9117034 https://www.proquest.com/docview/2468761011 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLXGTnDgayAGA-XACdEtbZOmOU7VEELaThvarWobBxBoQ2zjwK8nSbuNAULceogrS8-J7cTPBriUNMs1Y5nnRyY3YVxoLzMKexxjJnOMtaCWKNwfRLcjdjfm4xpcr7gwiOiKz7BtP91bvpoWC3tV1pF2TErItmDLmFnJ1Vrfp5jIPIpZ9XDpU9kZJsnAJICByUutp-Lhhutxs1R-HMDOq9zsQX-pT1lM8txezPN28fGtVeN_Fd6H3Sq8JN3SHg6ghpND2PnSdLABWbKG_h1J1WD1gUw12WCLEFsshDPyNCE99YBez7GsFHGUXa_rBi2Se3x8cpWspLdmzB3B6KY3TG69atCCVxhvP_d0TLNAxlGh40KZdFn6istYqkKFUjGJAmnuZxSFFsoISD8ITGTCI8yEirQvwmOoT6YTPAFCA8V1GPBCaJ8JNIhopELSAHme5zxuAl1ikBZVF3I7DOMlddkIlamFLbWwpRVsTbhaibyWLTj-WtywMKwWVgg0obUEOq026SwNWGR8gTmT_NPfpc5g2_67rF5pQX3-tsBzE4PM8wtnfJ-1i9lY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhUpzEjuMRVUUF2k4FsUVJfC4VqEW0ZeDXYztpSwEhtgy2ctJn-7uz77sDOJM0zTRjqedHJjZhXGgvNQZ7HGMmM4y1oFYo3GpHjXt2-8gfF-BiqoVBRJd8hlX76d7y1SAf26uyS2nbpIRsEZYN7zNeqLVmNyrGN49iVj5d-lRedmq1tgkBAxOZWq7i4Rz5uG4qP45gxyvXG9CaWFSkkzxXx6Osmn98K9b4X5M3Yb10MMlVsSK2YAH727D2pezgDqS1GfjvSMoSq10y0GROL0JsuhAOSa9P6qqLXt3prBRxol3vyrVaJA_41HO5rKQ-08ztwv11vVNreGWrBS83fD_ydEzTQMZRruNcmYBZ-orLWKpchVIxiQJp5qcUhRbKTJB-EBjfhEeYChVpX4R7sNQf9HEfCA0U12HAc6F9JtAgopEKSQPkWZbxuAJ0gkGSl3XIbTuMl8TFI1QmFrbEwpaUsFXgfDrltSjC8dfgHQvDdGCJQAWOJkAn5TYdJgGLDBuYU8k_-H3WKaw0Oq1m0rxp3x3Cqv1PkctyBEujtzEeG49klJ24hfgJP13cpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning+of+Communication+Routes+in+Edge-Enabled+Multi-Access+Vehicular+Environment&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Wu%2C+Celimuge&rft.au=Liu%2C+Zhi&rft.au=Liu%2C+Fuqiang&rft.au=Yoshinaga%2C+Tsutomu&rft.date=2020-12-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=6&rft.issue=4&rft.spage=1155&rft.epage=1165&rft_id=info:doi/10.1109%2FTCCN.2020.3002253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2020_3002253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |