Collaborative Learning of Communication Routes in Edge-Enabled Multi-Access Vehicular Environment

Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-acc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 6; no. 4; pp. 1155 - 1165
Main Authors Wu, Celimuge, Liu, Zhi, Liu, Fuqiang, Yoshinaga, Tsutomu, Ji, Yusheng, Li, Jie
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2020.3002253

Cover

Loading…
More Information
Summary:Some Internet-of-Things (IoT) applications have a strict requirement on the end-to-end delay where edge computing can be used to provide a short delay for end-users by conducing efficient caching and computing at the edge nodes. However, a fast and efficient communication route creation in multi-access vehicular environment is an underexplored research problem. In this paper, we propose a collaborative learning-based routing scheme for multi-access vehicular edge computing environment. The proposed scheme employs a reinforcement learning algorithm based on end-edge-cloud collaboration to find routes in a proactive manner with a low communication overhead. The routes are also preemptively changed based on the learned information. By integrating the "proactive" and "preemptive" approach, the proposed scheme can achieve a better forwarding of packets as compared with existing alternatives. We conduct extensive and realistic computer simulations to show the performance advantage of the proposed scheme over existing baselines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2332-7731
2332-7731
DOI:10.1109/TCCN.2020.3002253