Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems
Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is...
Saved in:
Published in | IEEE sensors journal Vol. 18; no. 3; pp. 1291 - 1300 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is presented in this paper. The time-frequency gray scale images are acquired by applying the CWT to the collected transient zero-sequence current signals of the faulty feeder and sound feeders. The features of the gray scale image will be extracted adaptively by the CNN, which is trained by a large number of gray scale images under various kinds of fault conditions and factors. The features extraction and the faulty feeder detection can be implemented by the trained CNN simultaneously. As a comparison, two faulty feeder detection methods based on artificial feature extraction and traditional machine learning are introduced. A practical resonant grounding distribution system is simulated in power systems computer aided design/electromagnetic transients including DC, the effectiveness and performance of the proposed faulty feeder detection method is compared and verified under different fault circumstances. |
---|---|
AbstractList | Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is presented in this paper. The time-frequency gray scale images are acquired by applying the CWT to the collected transient zero-sequence current signals of the faulty feeder and sound feeders. The features of the gray scale image will be extracted adaptively by the CNN, which is trained by a large number of gray scale images under various kinds of fault conditions and factors. The features extraction and the faulty feeder detection can be implemented by the trained CNN simultaneously. As a comparison, two faulty feeder detection methods based on artificial feature extraction and traditional machine learning are introduced. A practical resonant grounding distribution system is simulated in power systems computer aided design/electromagnetic transients including DC, the effectiveness and performance of the proposed faulty feeder detection method is compared and verified under different fault circumstances. |
Author | Mou-Fa Guo Duan-Yu Chen Xiao-Dan Zeng Nien-Che Yang |
Author_xml | – sequence: 1 givenname: Mou-Fa orcidid: 0000-0002-2358-0509 surname: Guo fullname: Guo, Mou-Fa – sequence: 2 givenname: Xiao-Dan surname: Zeng fullname: Zeng, Xiao-Dan – sequence: 3 givenname: Duan-Yu orcidid: 0000-0002-4607-0552 surname: Chen fullname: Chen, Duan-Yu – sequence: 4 givenname: Nien-Che surname: Yang fullname: Yang, Nien-Che |
BookMark | eNp9kU1v1DAQhi3USvSDH4C4WOKcrcdx7OQIu9sPtCoSbQW3yE4m4JK1F9sp6j_pzyXuVhw4cJrRzPOMRnqPyYHzDgl5C2wBwJqzTzfr6wVnoBZcKcnL-hU5gqqqC1CiPsh9yQpRqm-vyXGM94xBoyp1RJ5WiLtigzo4674XH3XEnq51SD_ouZ7GRFeYsEvWO3oXZ4IuvUvWTX6K9Kt-wBETvQ3axcGHLdWuz8CDH6es6JFe4xSeS_rtw09qHf2Ccd64RC-Cn1yfb65sTMGaZ4fePMaE23hKDgc9RnzzUk_I3fn6dnlZbD5fXC0_bIqON2UqBoGS9YZXTW8aIRQrjQRphlqhGETDpRTKKNNxXvYSGjFPB266qstz00F5Qt7v7-6C_zVhTO29n8L8emyhqWeqhipTak91wccYcGg7m3T-NwVtxxZYm2NocwxtjqF9iWE24R9zF-xWh8f_Ou_2jkXEv3wNICWo8g8Z15ig |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2936420 crossref_primary_10_3390_en15082741 crossref_primary_10_1016_j_ress_2022_108715 crossref_primary_10_1109_ACCESS_2021_3061211 crossref_primary_10_1016_j_engappai_2021_104504 crossref_primary_10_1039_C9AY01531K crossref_primary_10_1109_TIE_2024_3363749 crossref_primary_10_1155_2020_8826507 crossref_primary_10_1016_j_asoc_2025_112736 crossref_primary_10_1109_ACCESS_2019_2905358 crossref_primary_10_1002_int_22669 crossref_primary_10_1109_TIA_2022_3162569 crossref_primary_10_1016_j_ijepes_2022_108310 crossref_primary_10_1049_gtd2_13079 crossref_primary_10_1109_JSEN_2021_3099638 crossref_primary_10_1109_TIA_2023_3330121 crossref_primary_10_1016_j_apenergy_2020_115733 crossref_primary_10_1016_j_ijepes_2019_01_015 crossref_primary_10_1109_JSEN_2023_3245141 crossref_primary_10_1038_s41598_023_49901_9 crossref_primary_10_1109_JSEN_2019_2926095 crossref_primary_10_1109_TGRS_2022_3162833 crossref_primary_10_3390_en12193780 crossref_primary_10_1007_s12652_024_04834_7 crossref_primary_10_1186_s13677_023_00529_0 crossref_primary_10_1109_JSYST_2021_3056536 crossref_primary_10_1007_s11063_022_10884_9 crossref_primary_10_1016_j_eswa_2023_120631 crossref_primary_10_1109_ACCESS_2019_2922361 crossref_primary_10_1109_TSMC_2019_2919940 crossref_primary_10_1016_j_engappai_2020_104000 crossref_primary_10_3390_s22197396 crossref_primary_10_1109_LSENS_2019_2942145 crossref_primary_10_1109_TIM_2021_3115574 crossref_primary_10_1109_TBCAS_2020_3005148 crossref_primary_10_1177_00368504231213430 crossref_primary_10_1109_TPWRD_2018_2873017 crossref_primary_10_1051_ijmqe_2025001 crossref_primary_10_1109_ACCESS_2022_3158658 crossref_primary_10_1109_ACCESS_2022_3179119 crossref_primary_10_1109_TPWRD_2024_3380814 crossref_primary_10_3390_en14154695 crossref_primary_10_1109_TAP_2022_3177556 crossref_primary_10_1016_j_epsr_2020_106876 crossref_primary_10_1016_j_measurement_2024_114431 crossref_primary_10_1007_s10470_021_01909_9 crossref_primary_10_1109_TPWRD_2022_3153746 crossref_primary_10_3390_en16072937 crossref_primary_10_1016_j_ijepes_2022_108909 crossref_primary_10_1016_j_medengphy_2022_103811 crossref_primary_10_3233_JIFS_190101 crossref_primary_10_1109_TPWRD_2019_2922480 crossref_primary_10_1088_1755_1315_983_1_012015 crossref_primary_10_3389_fenrg_2023_1132895 crossref_primary_10_1002_2050_7038_13134 crossref_primary_10_3390_rs13122396 crossref_primary_10_1109_JSEN_2018_2886368 crossref_primary_10_1109_JSEN_2020_3021280 crossref_primary_10_1002_tee_23213 crossref_primary_10_1109_ACCESS_2023_3296737 crossref_primary_10_1109_ACCESS_2022_3195053 crossref_primary_10_1109_TPEL_2024_3396216 crossref_primary_10_1049_iet_stg_2019_0091 crossref_primary_10_1016_j_micpro_2021_104394 crossref_primary_10_1109_TSG_2020_3026390 crossref_primary_10_1109_TII_2022_3217276 crossref_primary_10_3390_app12178713 crossref_primary_10_1109_TIM_2023_3249224 crossref_primary_10_3390_en14113156 crossref_primary_10_3390_app14156712 crossref_primary_10_1109_TSG_2023_3243026 crossref_primary_10_3390_e23010119 crossref_primary_10_1109_ACCESS_2019_2925108 crossref_primary_10_1016_j_egyr_2022_09_068 crossref_primary_10_1016_j_asoc_2022_109427 crossref_primary_10_1016_j_ijepes_2021_107686 crossref_primary_10_1109_JSEN_2022_3212468 crossref_primary_10_3390_s24185997 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_JESTPE_2022_3227432 crossref_primary_10_3390_en17194773 crossref_primary_10_3934_mbe_2023001 crossref_primary_10_1016_j_ijepes_2024_110144 crossref_primary_10_1016_j_ijepes_2023_109543 crossref_primary_10_1109_TMECH_2024_3384292 crossref_primary_10_1109_ACCESS_2021_3129780 crossref_primary_10_1109_TPWRD_2019_2955185 crossref_primary_10_1109_JSEN_2022_3141110 crossref_primary_10_1109_JSEN_2023_3340715 crossref_primary_10_1088_1755_1315_701_1_012074 crossref_primary_10_1109_ACCESS_2023_3257041 crossref_primary_10_1109_TIE_2023_3247721 crossref_primary_10_3390_agriculture14081397 crossref_primary_10_1109_ACCESS_2024_3380192 crossref_primary_10_3390_en13010142 crossref_primary_10_1109_ACCESS_2021_3069566 crossref_primary_10_1109_JSEN_2020_2964109 crossref_primary_10_1109_TPWRD_2019_2901594 crossref_primary_10_1016_j_ijepes_2024_110013 crossref_primary_10_1016_j_ijepes_2022_108264 crossref_primary_10_1002_2050_7038_12760 crossref_primary_10_1109_TPWRD_2020_3022422 crossref_primary_10_1109_TPEL_2023_3299022 crossref_primary_10_1007_s40430_022_03975_0 crossref_primary_10_1016_j_asoc_2022_109663 crossref_primary_10_12677_MOS_2023_123272 crossref_primary_10_1109_ACCESS_2021_3062703 crossref_primary_10_1016_j_egyr_2023_09_168 crossref_primary_10_1016_j_epsr_2022_108085 crossref_primary_10_4018_IJITSA_321753 crossref_primary_10_1109_ACCESS_2020_2970273 crossref_primary_10_1109_TIM_2023_3342231 crossref_primary_10_1016_j_segan_2024_101551 crossref_primary_10_1109_TIM_2024_3502774 crossref_primary_10_1016_j_epsr_2020_106578 crossref_primary_10_1109_TPWRD_2021_3074217 crossref_primary_10_1007_s11708_018_0589_4 crossref_primary_10_12677_SG_2023_135008 crossref_primary_10_1109_JSEN_2021_3133352 crossref_primary_10_3390_bios13030397 crossref_primary_10_1109_ACCESS_2022_3177544 crossref_primary_10_1002_cta_3954 crossref_primary_10_1016_j_segan_2020_100331 crossref_primary_10_1002_cta_4484 crossref_primary_10_1109_JSYST_2023_3281826 crossref_primary_10_1109_JSEN_2021_3100772 crossref_primary_10_1109_TIA_2023_3256975 crossref_primary_10_1016_j_measurement_2020_108711 crossref_primary_10_1109_ACCESS_2021_3095054 crossref_primary_10_1080_15325008_2023_2168091 crossref_primary_10_1109_TPWRS_2024_3447533 crossref_primary_10_1038_s41598_024_55722_1 crossref_primary_10_1049_gtd2_12128 crossref_primary_10_1016_j_epsr_2022_109025 crossref_primary_10_1016_j_ijepes_2023_109616 crossref_primary_10_1109_ACCESS_2024_3522556 crossref_primary_10_1109_ICJECE_2021_3109293 crossref_primary_10_1109_JSEN_2023_3303645 crossref_primary_10_1109_TPWRD_2022_3142186 crossref_primary_10_1016_j_ins_2024_120635 crossref_primary_10_3390_en15145005 crossref_primary_10_1049_rpg2_12564 crossref_primary_10_1016_j_epsr_2022_108040 crossref_primary_10_3390_sym15010083 crossref_primary_10_1109_JSEN_2019_2919776 crossref_primary_10_1155_2021_9979634 crossref_primary_10_1016_j_segan_2022_100660 crossref_primary_10_1016_j_epsr_2021_107628 crossref_primary_10_1109_TSG_2020_2994637 crossref_primary_10_1109_ACCESS_2021_3121880 crossref_primary_10_1109_JSEN_2023_3250391 crossref_primary_10_1080_10589759_2024_2383790 crossref_primary_10_1109_LGRS_2021_3059422 crossref_primary_10_1177_1475921720922797 crossref_primary_10_1007_s11047_024_09995_0 crossref_primary_10_3390_en14217019 crossref_primary_10_2139_ssrn_4004819 crossref_primary_10_1049_gtd2_12070 crossref_primary_10_1109_TSG_2022_3222209 crossref_primary_10_1109_JSYST_2022_3151630 crossref_primary_10_1186_s41601_023_00280_3 crossref_primary_10_1016_j_ijepes_2023_109271 crossref_primary_10_1186_s13677_023_00527_2 crossref_primary_10_1002_tee_23290 crossref_primary_10_1109_JSEN_2023_3242067 crossref_primary_10_1016_j_engappai_2023_105890 crossref_primary_10_1016_j_apenergy_2024_123949 crossref_primary_10_3390_en13184724 crossref_primary_10_1016_j_ijepes_2022_108535 crossref_primary_10_1109_TBME_2024_3454545 crossref_primary_10_1007_s40866_024_00205_5 crossref_primary_10_1109_ACCESS_2019_2950461 crossref_primary_10_1007_s41939_023_00274_6 crossref_primary_10_1109_TSG_2023_3346453 crossref_primary_10_1007_s42417_022_00780_w crossref_primary_10_1109_ACCESS_2023_3288852 crossref_primary_10_1016_j_epsr_2021_107766 crossref_primary_10_1109_JSEN_2020_3030910 crossref_primary_10_1016_j_epsr_2023_109501 crossref_primary_10_1002_cta_4260 crossref_primary_10_1049_iet_gtd_2019_0743 crossref_primary_10_1016_j_rineng_2024_103884 crossref_primary_10_1109_TPWRD_2019_2913728 crossref_primary_10_1016_j_ijepes_2021_107835 crossref_primary_10_1109_TIM_2020_3014006 crossref_primary_10_1109_TIM_2025_3547493 crossref_primary_10_1016_j_eswa_2025_126392 crossref_primary_10_1109_JSEN_2018_2869849 crossref_primary_10_1080_23080477_2023_2285275 crossref_primary_10_1109_TIM_2025_3548224 crossref_primary_10_1109_TPWRD_2024_3450916 crossref_primary_10_1016_j_ijepes_2019_105391 crossref_primary_10_1109_ACCESS_2020_2994139 crossref_primary_10_3390_en12224333 |
Cites_doi | 10.1016/j.ijepes.2017.05.014 10.1109/CCECE.2005.1557253 10.1109/TPWRD.2015.2408814 10.1109/LGRS.2017.2657778 10.1109/TPWRD.2004.837836 10.1109/TPWRD.2005.852367 10.1109/LSP.2016.2571727 10.1109/ICIA.2006.305965 10.1109/TPWRD.2010.2053562 10.1109/APPEEC.2016.7779931 10.1109/TPWRD.2016.2601075 10.1016/j.epsr.2010.12.016 10.1109/TEC.2013.2281491 10.4028/www.scientific.net/AMM.393.953 10.1109/TPWRD.2010.2068578 10.1049/iet-gtd:20070523 10.1016/j.ijepes.2012.12.005 10.1016/j.ijepes.2014.10.010 10.1109/TPWRD.2014.2361207 10.1049/iet-gtd.2013.0235 10.17775/CSEEJPES.2016.00038 10.1049/iet-gtd.2016.0140 10.1109/TPWRD.2012.2211898 10.1109/TGRS.2016.2612821 10.1109/TPWRD.2011.2141157 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2017.2776238 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1300 |
ExternalDocumentID | 10_1109_JSEN_2017_2776238 8116617 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China through the Project of Research of Flexible and Adaptive Arc-suppression Method for Single-Phase Grounding Fault in Distribution Networks grantid: 51677030 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-f4e60db259db944703b616bf87e4f4926647b7bc223d6194e4ff2bc5c647bbc13 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:16:25 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Jul 01 03:36:40 EDT 2025 Wed Aug 27 03:06:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f4e60db259db944703b616bf87e4f4926647b7bc223d6194e4ff2bc5c647bbc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4607-0552 0000-0002-2358-0509 |
PQID | 1986478151 |
PQPubID | 75733 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1986478151 crossref_citationtrail_10_1109_JSEN_2017_2776238 ieee_primary_8116617 crossref_primary_10_1109_JSEN_2017_2776238 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref2 guo (ref16) 2017; 93 ref1 tiantian (ref29) 2009; 20 ref19 ref18 nielsen (ref26) 2015 ref24 ref23 kang (ref15) 2016; 44 ref20 ref22 ref28 zhang (ref17) 2013; 49 ref27 ref8 ref7 krizhevsky (ref25) 2012 ref9 ref4 ref3 ref6 ref5 ngui (ref21) 2013; 393 |
References_xml | – volume: 93 start-page: 97 year: 2017 ident: ref16 article-title: Features-clustering-based earth fault detection using singular-value decomposition and fuzzy C-means in resonant grounding distribution systems publication-title: Int J Elect Power Energy Syst doi: 10.1016/j.ijepes.2017.05.014 – ident: ref22 doi: 10.1109/CCECE.2005.1557253 – ident: ref3 doi: 10.1109/TPWRD.2015.2408814 – ident: ref23 doi: 10.1109/LGRS.2017.2657778 – ident: ref19 doi: 10.1109/TPWRD.2004.837836 – ident: ref20 doi: 10.1109/TPWRD.2005.852367 – year: 2015 ident: ref26 publication-title: Neural Networks and Deep Learning – ident: ref14 doi: 10.1109/LSP.2016.2571727 – ident: ref6 doi: 10.1109/ICIA.2006.305965 – ident: ref11 doi: 10.1109/TPWRD.2010.2053562 – ident: ref12 doi: 10.1109/APPEEC.2016.7779931 – ident: ref18 doi: 10.1109/TPWRD.2016.2601075 – ident: ref27 doi: 10.1016/j.epsr.2010.12.016 – ident: ref8 doi: 10.1109/TEC.2013.2281491 – volume: 393 start-page: 953 year: 2013 ident: ref21 article-title: Wavelet analysis: Mother wavelet selection methods publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.393.953 – ident: ref13 doi: 10.1109/TPWRD.2010.2068578 – ident: ref4 doi: 10.1049/iet-gtd:20070523 – start-page: 1097 year: 2012 ident: ref25 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – volume: 20 start-page: 1344 year: 2009 ident: ref29 article-title: Large scale classification with local diversity AdaBoost SVM algorithm publication-title: Journal of Systems Engineering and Electronics – volume: 49 start-page: 243 year: 2013 ident: ref17 article-title: An ANFIS-based fault classification approach in power distribution system publication-title: Int J Elect Power Energy Syst doi: 10.1016/j.ijepes.2012.12.005 – ident: ref7 doi: 10.1016/j.ijepes.2014.10.010 – volume: 44 start-page: 360e year: 2016 ident: ref15 article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction publication-title: Comput Vis Pattern Recognit – ident: ref5 doi: 10.1109/TPWRD.2014.2361207 – ident: ref2 doi: 10.1049/iet-gtd.2013.0235 – ident: ref10 doi: 10.17775/CSEEJPES.2016.00038 – ident: ref28 doi: 10.1049/iet-gtd.2016.0140 – ident: ref9 doi: 10.1109/TPWRD.2012.2211898 – ident: ref24 doi: 10.1109/TGRS.2016.2612821 – ident: ref1 doi: 10.1109/TPWRD.2011.2141157 |
SSID | ssj0019757 |
Score | 2.595693 |
Snippet | Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1291 |
SubjectTerms | Artificial neural networks CAD Computer aided design Computer simulation Continuous wavelet transform Continuous wavelet transforms convolutional neural network (CNN) Deep learning Distribution systems Fault detection faulty feeder detection Feature extraction Feeders Gray scale Image acquisition Machine learning Neural networks System effectiveness Time-frequency analysis Transient analysis wavelet transform Wavelet transforms Zero sequence current |
Title | Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems |
URI | https://ieeexplore.ieee.org/document/8116617 https://www.proquest.com/docview/1986478151 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ui3rwLa4vcvAkZm1306Y9qruLCHpRcW-leVRF6Yq2gv4Sf64zaXYRFbGXlpCUwEwyk8w33wDsddHMGNnF3U-kggttFE-0ibjAnVDHcWCNK8lyfhGfXouzYTScgoNJLoy11oHPbJs-XSzfjHRNV2WHSRiiOZHTMI0HtyZXaxIxSKVj9cQFHHDRlUMfwQyD9PDssn9BIC7Z7khc-5SK8sUGuaIqP3ZiZ14Gi3A-nliDKnlo15Vq6_dvnI3_nfkSLHg_kx01irEMU7Zcgfkv7IMrMOsLoN-9rcJHz9on7slWb_kx2jbD-qhWd2yQ148V69nKgbZK5kAGjFit7st6VL-wm5yKV1TsauwDs7w01OHVqzXOgzhA3MuBztl9yShuQCAcRrdfLrWG9YjE19ffYp5KfQ2uB_2rk1PuizZwjZ5DxQth48AoPFUZlQqBG4qKw1gVibSiIHbCWEgllUa3xNANCrYWHaUjTe1Kh911mClHpd0ARtSG1uCT4I_iopMrJdM876Q2Cosiki0IxmLMtGc0p8Iaj5k72QRpRpLPSPKZl3wL9idDnho6j786r5IkJx29EFuwPdaVzC_4lywkmnuZoP-0-fuoLZjDfycN4HsbZqrn2u6gP1OpXafInxK19B4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeGA8AINNlMHmhz1Nc0laJ04eB21VOtqXFa1vUfwjgIZSBAkS_CX7c3fnuFW1TRN5SWQ5iaU7-86-774D-NRFM2NkF1c_kQoutFE80SbiAldCHceBNa4ky3gSDy_FaBbN1uDLMhfGWuvAZ7ZNjy6Wb-a6pqOykyQM0ZzIV7CBdj8Km2ytZcwglY7XE6dwwEVXznwMMwzSk9H3_oRgXLLdkTj7KRllxQq5sip_rcXOwAx2YLwYWoMr-dmuK9XWz3-wNr507Luw7T1N9rVRjTewZss92FrhH9yDTV8C_fppH371rL3jnm71ip-idTOsj4p1zQZ5fVuxnq0cbKtkDmbAiNfqpqzn9QP7kVP5iopNF14wy0tDHR69YuM4iAXE3RzsnN2UjCIHBMNhdP7lkmtYj2h8fQUu5snU38LloD89G3JftoFr9B0qXggbB0bhvsqoVAhcUlQcxqpIpBUF8RPGQiqpNDomhs5QsLXoKB1palc67L6D9XJe2gNgRG5oDV4JfiguOrlSMs3zTmqjsCgi2YJgIcZMe05zKq1xm7m9TZBmJPmMJJ95ybfg8_KVu4bQ43-d90mSy45eiC04WuhK5qf8QxYS0b1M0IM6_PdbH2FzOB1fZBfnk2_v4TX-J2ng30ewXt3X9hi9m0p9cEr9G-3I92c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Earth+Fault+Detection+Using+Continuous+Wavelet+Transform+and+Convolutional+Neural+Network+in+Resonant+Grounding+Distribution+Systems&rft.jtitle=IEEE+sensors+journal&rft.au=Guo%2C+Mou-Fa&rft.au=Zeng%2C+Xiao-Dan&rft.au=Chen%2C+Duan-Yu&rft.au=Yang%2C+Nien-Che&rft.date=2018-02-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=18&rft.issue=3&rft.spage=1291&rft.epage=1300&rft_id=info:doi/10.1109%2FJSEN.2017.2776238&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2017_2776238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |