Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems

Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 18; no. 3; pp. 1291 - 1300
Main Authors Guo, Mou-Fa, Zeng, Xiao-Dan, Chen, Duan-Yu, Yang, Nien-Che
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is presented in this paper. The time-frequency gray scale images are acquired by applying the CWT to the collected transient zero-sequence current signals of the faulty feeder and sound feeders. The features of the gray scale image will be extracted adaptively by the CNN, which is trained by a large number of gray scale images under various kinds of fault conditions and factors. The features extraction and the faulty feeder detection can be implemented by the trained CNN simultaneously. As a comparison, two faulty feeder detection methods based on artificial feature extraction and traditional machine learning are introduced. A practical resonant grounding distribution system is simulated in power systems computer aided design/electromagnetic transients including DC, the effectiveness and performance of the proposed faulty feeder detection method is compared and verified under different fault circumstances.
AbstractList Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is presented in this paper. The time-frequency gray scale images are acquired by applying the CWT to the collected transient zero-sequence current signals of the faulty feeder and sound feeders. The features of the gray scale image will be extracted adaptively by the CNN, which is trained by a large number of gray scale images under various kinds of fault conditions and factors. The features extraction and the faulty feeder detection can be implemented by the trained CNN simultaneously. As a comparison, two faulty feeder detection methods based on artificial feature extraction and traditional machine learning are introduced. A practical resonant grounding distribution system is simulated in power systems computer aided design/electromagnetic transients including DC, the effectiveness and performance of the proposed faulty feeder detection method is compared and verified under different fault circumstances.
Author Mou-Fa Guo
Duan-Yu Chen
Xiao-Dan Zeng
Nien-Che Yang
Author_xml – sequence: 1
  givenname: Mou-Fa
  orcidid: 0000-0002-2358-0509
  surname: Guo
  fullname: Guo, Mou-Fa
– sequence: 2
  givenname: Xiao-Dan
  surname: Zeng
  fullname: Zeng, Xiao-Dan
– sequence: 3
  givenname: Duan-Yu
  orcidid: 0000-0002-4607-0552
  surname: Chen
  fullname: Chen, Duan-Yu
– sequence: 4
  givenname: Nien-Che
  surname: Yang
  fullname: Yang, Nien-Che
BookMark eNp9kU1v1DAQhi3USvSDH4C4WOKcrcdx7OQIu9sPtCoSbQW3yE4m4JK1F9sp6j_pzyXuVhw4cJrRzPOMRnqPyYHzDgl5C2wBwJqzTzfr6wVnoBZcKcnL-hU5gqqqC1CiPsh9yQpRqm-vyXGM94xBoyp1RJ5WiLtigzo4674XH3XEnq51SD_ouZ7GRFeYsEvWO3oXZ4IuvUvWTX6K9Kt-wBETvQ3axcGHLdWuz8CDH6es6JFe4xSeS_rtw09qHf2Ccd64RC-Cn1yfb65sTMGaZ4fePMaE23hKDgc9RnzzUk_I3fn6dnlZbD5fXC0_bIqON2UqBoGS9YZXTW8aIRQrjQRphlqhGETDpRTKKNNxXvYSGjFPB266qstz00F5Qt7v7-6C_zVhTO29n8L8emyhqWeqhipTak91wccYcGg7m3T-NwVtxxZYm2NocwxtjqF9iWE24R9zF-xWh8f_Ou_2jkXEv3wNICWo8g8Z15ig
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2936420
crossref_primary_10_3390_en15082741
crossref_primary_10_1016_j_ress_2022_108715
crossref_primary_10_1109_ACCESS_2021_3061211
crossref_primary_10_1016_j_engappai_2021_104504
crossref_primary_10_1039_C9AY01531K
crossref_primary_10_1109_TIE_2024_3363749
crossref_primary_10_1155_2020_8826507
crossref_primary_10_1016_j_asoc_2025_112736
crossref_primary_10_1109_ACCESS_2019_2905358
crossref_primary_10_1002_int_22669
crossref_primary_10_1109_TIA_2022_3162569
crossref_primary_10_1016_j_ijepes_2022_108310
crossref_primary_10_1049_gtd2_13079
crossref_primary_10_1109_JSEN_2021_3099638
crossref_primary_10_1109_TIA_2023_3330121
crossref_primary_10_1016_j_apenergy_2020_115733
crossref_primary_10_1016_j_ijepes_2019_01_015
crossref_primary_10_1109_JSEN_2023_3245141
crossref_primary_10_1038_s41598_023_49901_9
crossref_primary_10_1109_JSEN_2019_2926095
crossref_primary_10_1109_TGRS_2022_3162833
crossref_primary_10_3390_en12193780
crossref_primary_10_1007_s12652_024_04834_7
crossref_primary_10_1186_s13677_023_00529_0
crossref_primary_10_1109_JSYST_2021_3056536
crossref_primary_10_1007_s11063_022_10884_9
crossref_primary_10_1016_j_eswa_2023_120631
crossref_primary_10_1109_ACCESS_2019_2922361
crossref_primary_10_1109_TSMC_2019_2919940
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_3390_s22197396
crossref_primary_10_1109_LSENS_2019_2942145
crossref_primary_10_1109_TIM_2021_3115574
crossref_primary_10_1109_TBCAS_2020_3005148
crossref_primary_10_1177_00368504231213430
crossref_primary_10_1109_TPWRD_2018_2873017
crossref_primary_10_1051_ijmqe_2025001
crossref_primary_10_1109_ACCESS_2022_3158658
crossref_primary_10_1109_ACCESS_2022_3179119
crossref_primary_10_1109_TPWRD_2024_3380814
crossref_primary_10_3390_en14154695
crossref_primary_10_1109_TAP_2022_3177556
crossref_primary_10_1016_j_epsr_2020_106876
crossref_primary_10_1016_j_measurement_2024_114431
crossref_primary_10_1007_s10470_021_01909_9
crossref_primary_10_1109_TPWRD_2022_3153746
crossref_primary_10_3390_en16072937
crossref_primary_10_1016_j_ijepes_2022_108909
crossref_primary_10_1016_j_medengphy_2022_103811
crossref_primary_10_3233_JIFS_190101
crossref_primary_10_1109_TPWRD_2019_2922480
crossref_primary_10_1088_1755_1315_983_1_012015
crossref_primary_10_3389_fenrg_2023_1132895
crossref_primary_10_1002_2050_7038_13134
crossref_primary_10_3390_rs13122396
crossref_primary_10_1109_JSEN_2018_2886368
crossref_primary_10_1109_JSEN_2020_3021280
crossref_primary_10_1002_tee_23213
crossref_primary_10_1109_ACCESS_2023_3296737
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_1109_TPEL_2024_3396216
crossref_primary_10_1049_iet_stg_2019_0091
crossref_primary_10_1016_j_micpro_2021_104394
crossref_primary_10_1109_TSG_2020_3026390
crossref_primary_10_1109_TII_2022_3217276
crossref_primary_10_3390_app12178713
crossref_primary_10_1109_TIM_2023_3249224
crossref_primary_10_3390_en14113156
crossref_primary_10_3390_app14156712
crossref_primary_10_1109_TSG_2023_3243026
crossref_primary_10_3390_e23010119
crossref_primary_10_1109_ACCESS_2019_2925108
crossref_primary_10_1016_j_egyr_2022_09_068
crossref_primary_10_1016_j_asoc_2022_109427
crossref_primary_10_1016_j_ijepes_2021_107686
crossref_primary_10_1109_JSEN_2022_3212468
crossref_primary_10_3390_s24185997
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_JESTPE_2022_3227432
crossref_primary_10_3390_en17194773
crossref_primary_10_3934_mbe_2023001
crossref_primary_10_1016_j_ijepes_2024_110144
crossref_primary_10_1016_j_ijepes_2023_109543
crossref_primary_10_1109_TMECH_2024_3384292
crossref_primary_10_1109_ACCESS_2021_3129780
crossref_primary_10_1109_TPWRD_2019_2955185
crossref_primary_10_1109_JSEN_2022_3141110
crossref_primary_10_1109_JSEN_2023_3340715
crossref_primary_10_1088_1755_1315_701_1_012074
crossref_primary_10_1109_ACCESS_2023_3257041
crossref_primary_10_1109_TIE_2023_3247721
crossref_primary_10_3390_agriculture14081397
crossref_primary_10_1109_ACCESS_2024_3380192
crossref_primary_10_3390_en13010142
crossref_primary_10_1109_ACCESS_2021_3069566
crossref_primary_10_1109_JSEN_2020_2964109
crossref_primary_10_1109_TPWRD_2019_2901594
crossref_primary_10_1016_j_ijepes_2024_110013
crossref_primary_10_1016_j_ijepes_2022_108264
crossref_primary_10_1002_2050_7038_12760
crossref_primary_10_1109_TPWRD_2020_3022422
crossref_primary_10_1109_TPEL_2023_3299022
crossref_primary_10_1007_s40430_022_03975_0
crossref_primary_10_1016_j_asoc_2022_109663
crossref_primary_10_12677_MOS_2023_123272
crossref_primary_10_1109_ACCESS_2021_3062703
crossref_primary_10_1016_j_egyr_2023_09_168
crossref_primary_10_1016_j_epsr_2022_108085
crossref_primary_10_4018_IJITSA_321753
crossref_primary_10_1109_ACCESS_2020_2970273
crossref_primary_10_1109_TIM_2023_3342231
crossref_primary_10_1016_j_segan_2024_101551
crossref_primary_10_1109_TIM_2024_3502774
crossref_primary_10_1016_j_epsr_2020_106578
crossref_primary_10_1109_TPWRD_2021_3074217
crossref_primary_10_1007_s11708_018_0589_4
crossref_primary_10_12677_SG_2023_135008
crossref_primary_10_1109_JSEN_2021_3133352
crossref_primary_10_3390_bios13030397
crossref_primary_10_1109_ACCESS_2022_3177544
crossref_primary_10_1002_cta_3954
crossref_primary_10_1016_j_segan_2020_100331
crossref_primary_10_1002_cta_4484
crossref_primary_10_1109_JSYST_2023_3281826
crossref_primary_10_1109_JSEN_2021_3100772
crossref_primary_10_1109_TIA_2023_3256975
crossref_primary_10_1016_j_measurement_2020_108711
crossref_primary_10_1109_ACCESS_2021_3095054
crossref_primary_10_1080_15325008_2023_2168091
crossref_primary_10_1109_TPWRS_2024_3447533
crossref_primary_10_1038_s41598_024_55722_1
crossref_primary_10_1049_gtd2_12128
crossref_primary_10_1016_j_epsr_2022_109025
crossref_primary_10_1016_j_ijepes_2023_109616
crossref_primary_10_1109_ACCESS_2024_3522556
crossref_primary_10_1109_ICJECE_2021_3109293
crossref_primary_10_1109_JSEN_2023_3303645
crossref_primary_10_1109_TPWRD_2022_3142186
crossref_primary_10_1016_j_ins_2024_120635
crossref_primary_10_3390_en15145005
crossref_primary_10_1049_rpg2_12564
crossref_primary_10_1016_j_epsr_2022_108040
crossref_primary_10_3390_sym15010083
crossref_primary_10_1109_JSEN_2019_2919776
crossref_primary_10_1155_2021_9979634
crossref_primary_10_1016_j_segan_2022_100660
crossref_primary_10_1016_j_epsr_2021_107628
crossref_primary_10_1109_TSG_2020_2994637
crossref_primary_10_1109_ACCESS_2021_3121880
crossref_primary_10_1109_JSEN_2023_3250391
crossref_primary_10_1080_10589759_2024_2383790
crossref_primary_10_1109_LGRS_2021_3059422
crossref_primary_10_1177_1475921720922797
crossref_primary_10_1007_s11047_024_09995_0
crossref_primary_10_3390_en14217019
crossref_primary_10_2139_ssrn_4004819
crossref_primary_10_1049_gtd2_12070
crossref_primary_10_1109_TSG_2022_3222209
crossref_primary_10_1109_JSYST_2022_3151630
crossref_primary_10_1186_s41601_023_00280_3
crossref_primary_10_1016_j_ijepes_2023_109271
crossref_primary_10_1186_s13677_023_00527_2
crossref_primary_10_1002_tee_23290
crossref_primary_10_1109_JSEN_2023_3242067
crossref_primary_10_1016_j_engappai_2023_105890
crossref_primary_10_1016_j_apenergy_2024_123949
crossref_primary_10_3390_en13184724
crossref_primary_10_1016_j_ijepes_2022_108535
crossref_primary_10_1109_TBME_2024_3454545
crossref_primary_10_1007_s40866_024_00205_5
crossref_primary_10_1109_ACCESS_2019_2950461
crossref_primary_10_1007_s41939_023_00274_6
crossref_primary_10_1109_TSG_2023_3346453
crossref_primary_10_1007_s42417_022_00780_w
crossref_primary_10_1109_ACCESS_2023_3288852
crossref_primary_10_1016_j_epsr_2021_107766
crossref_primary_10_1109_JSEN_2020_3030910
crossref_primary_10_1016_j_epsr_2023_109501
crossref_primary_10_1002_cta_4260
crossref_primary_10_1049_iet_gtd_2019_0743
crossref_primary_10_1016_j_rineng_2024_103884
crossref_primary_10_1109_TPWRD_2019_2913728
crossref_primary_10_1016_j_ijepes_2021_107835
crossref_primary_10_1109_TIM_2020_3014006
crossref_primary_10_1109_TIM_2025_3547493
crossref_primary_10_1016_j_eswa_2025_126392
crossref_primary_10_1109_JSEN_2018_2869849
crossref_primary_10_1080_23080477_2023_2285275
crossref_primary_10_1109_TIM_2025_3548224
crossref_primary_10_1109_TPWRD_2024_3450916
crossref_primary_10_1016_j_ijepes_2019_105391
crossref_primary_10_1109_ACCESS_2020_2994139
crossref_primary_10_3390_en12224333
Cites_doi 10.1016/j.ijepes.2017.05.014
10.1109/CCECE.2005.1557253
10.1109/TPWRD.2015.2408814
10.1109/LGRS.2017.2657778
10.1109/TPWRD.2004.837836
10.1109/TPWRD.2005.852367
10.1109/LSP.2016.2571727
10.1109/ICIA.2006.305965
10.1109/TPWRD.2010.2053562
10.1109/APPEEC.2016.7779931
10.1109/TPWRD.2016.2601075
10.1016/j.epsr.2010.12.016
10.1109/TEC.2013.2281491
10.4028/www.scientific.net/AMM.393.953
10.1109/TPWRD.2010.2068578
10.1049/iet-gtd:20070523
10.1016/j.ijepes.2012.12.005
10.1016/j.ijepes.2014.10.010
10.1109/TPWRD.2014.2361207
10.1049/iet-gtd.2013.0235
10.17775/CSEEJPES.2016.00038
10.1049/iet-gtd.2016.0140
10.1109/TPWRD.2012.2211898
10.1109/TGRS.2016.2612821
10.1109/TPWRD.2011.2141157
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2017.2776238
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1300
ExternalDocumentID 10_1109_JSEN_2017_2776238
8116617
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China through the Project of Research of Flexible and Adaptive Arc-suppression Method for Single-Phase Grounding Fault in Distribution Networks
  grantid: 51677030
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-f4e60db259db944703b616bf87e4f4926647b7bc223d6194e4ff2bc5c647bbc13
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:16:25 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Jul 01 03:36:40 EDT 2025
Wed Aug 27 03:06:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f4e60db259db944703b616bf87e4f4926647b7bc223d6194e4ff2bc5c647bbc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4607-0552
0000-0002-2358-0509
PQID 1986478151
PQPubID 75733
PageCount 10
ParticipantIDs proquest_journals_1986478151
crossref_citationtrail_10_1109_JSEN_2017_2776238
ieee_primary_8116617
crossref_primary_10_1109_JSEN_2017_2776238
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
guo (ref16) 2017; 93
ref1
tiantian (ref29) 2009; 20
ref19
ref18
nielsen (ref26) 2015
ref24
ref23
kang (ref15) 2016; 44
ref20
ref22
ref28
zhang (ref17) 2013; 49
ref27
ref8
ref7
krizhevsky (ref25) 2012
ref9
ref4
ref3
ref6
ref5
ngui (ref21) 2013; 393
References_xml – volume: 93
  start-page: 97
  year: 2017
  ident: ref16
  article-title: Features-clustering-based earth fault detection using singular-value decomposition and fuzzy C-means in resonant grounding distribution systems
  publication-title: Int J Elect Power Energy Syst
  doi: 10.1016/j.ijepes.2017.05.014
– ident: ref22
  doi: 10.1109/CCECE.2005.1557253
– ident: ref3
  doi: 10.1109/TPWRD.2015.2408814
– ident: ref23
  doi: 10.1109/LGRS.2017.2657778
– ident: ref19
  doi: 10.1109/TPWRD.2004.837836
– ident: ref20
  doi: 10.1109/TPWRD.2005.852367
– year: 2015
  ident: ref26
  publication-title: Neural Networks and Deep Learning
– ident: ref14
  doi: 10.1109/LSP.2016.2571727
– ident: ref6
  doi: 10.1109/ICIA.2006.305965
– ident: ref11
  doi: 10.1109/TPWRD.2010.2053562
– ident: ref12
  doi: 10.1109/APPEEC.2016.7779931
– ident: ref18
  doi: 10.1109/TPWRD.2016.2601075
– ident: ref27
  doi: 10.1016/j.epsr.2010.12.016
– ident: ref8
  doi: 10.1109/TEC.2013.2281491
– volume: 393
  start-page: 953
  year: 2013
  ident: ref21
  article-title: Wavelet analysis: Mother wavelet selection methods
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.393.953
– ident: ref13
  doi: 10.1109/TPWRD.2010.2068578
– ident: ref4
  doi: 10.1049/iet-gtd:20070523
– start-page: 1097
  year: 2012
  ident: ref25
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 20
  start-page: 1344
  year: 2009
  ident: ref29
  article-title: Large scale classification with local diversity AdaBoost SVM algorithm
  publication-title: Journal of Systems Engineering and Electronics
– volume: 49
  start-page: 243
  year: 2013
  ident: ref17
  article-title: An ANFIS-based fault classification approach in power distribution system
  publication-title: Int J Elect Power Energy Syst
  doi: 10.1016/j.ijepes.2012.12.005
– ident: ref7
  doi: 10.1016/j.ijepes.2014.10.010
– volume: 44
  start-page: 360e
  year: 2016
  ident: ref15
  article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
  publication-title: Comput Vis Pattern Recognit
– ident: ref5
  doi: 10.1109/TPWRD.2014.2361207
– ident: ref2
  doi: 10.1049/iet-gtd.2013.0235
– ident: ref10
  doi: 10.17775/CSEEJPES.2016.00038
– ident: ref28
  doi: 10.1049/iet-gtd.2016.0140
– ident: ref9
  doi: 10.1109/TPWRD.2012.2211898
– ident: ref24
  doi: 10.1109/TGRS.2016.2612821
– ident: ref1
  doi: 10.1109/TPWRD.2011.2141157
SSID ssj0019757
Score 2.595693
Snippet Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1291
SubjectTerms Artificial neural networks
CAD
Computer aided design
Computer simulation
Continuous wavelet transform
Continuous wavelet transforms
convolutional neural network (CNN)
Deep learning
Distribution systems
Fault detection
faulty feeder detection
Feature extraction
Feeders
Gray scale
Image acquisition
Machine learning
Neural networks
System effectiveness
Time-frequency analysis
Transient analysis
wavelet transform
Wavelet transforms
Zero sequence current
Title Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems
URI https://ieeexplore.ieee.org/document/8116617
https://www.proquest.com/docview/1986478151
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ui3rwLa4vcvAkZm1306Y9qruLCHpRcW-leVRF6Yq2gv4Sf64zaXYRFbGXlpCUwEwyk8w33wDsddHMGNnF3U-kggttFE-0ibjAnVDHcWCNK8lyfhGfXouzYTScgoNJLoy11oHPbJs-XSzfjHRNV2WHSRiiOZHTMI0HtyZXaxIxSKVj9cQFHHDRlUMfwQyD9PDssn9BIC7Z7khc-5SK8sUGuaIqP3ZiZ14Gi3A-nliDKnlo15Vq6_dvnI3_nfkSLHg_kx01irEMU7Zcgfkv7IMrMOsLoN-9rcJHz9on7slWb_kx2jbD-qhWd2yQ148V69nKgbZK5kAGjFit7st6VL-wm5yKV1TsauwDs7w01OHVqzXOgzhA3MuBztl9yShuQCAcRrdfLrWG9YjE19ffYp5KfQ2uB_2rk1PuizZwjZ5DxQth48AoPFUZlQqBG4qKw1gVibSiIHbCWEgllUa3xNANCrYWHaUjTe1Kh911mClHpd0ARtSG1uCT4I_iopMrJdM876Q2Cosiki0IxmLMtGc0p8Iaj5k72QRpRpLPSPKZl3wL9idDnho6j786r5IkJx29EFuwPdaVzC_4lywkmnuZoP-0-fuoLZjDfycN4HsbZqrn2u6gP1OpXafInxK19B4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeGA8AINNlMHmhz1Nc0laJ04eB21VOtqXFa1vUfwjgIZSBAkS_CX7c3fnuFW1TRN5SWQ5iaU7-86-774D-NRFM2NkF1c_kQoutFE80SbiAldCHceBNa4ky3gSDy_FaBbN1uDLMhfGWuvAZ7ZNjy6Wb-a6pqOykyQM0ZzIV7CBdj8Km2ytZcwglY7XE6dwwEVXznwMMwzSk9H3_oRgXLLdkTj7KRllxQq5sip_rcXOwAx2YLwYWoMr-dmuK9XWz3-wNr507Luw7T1N9rVRjTewZss92FrhH9yDTV8C_fppH371rL3jnm71ip-idTOsj4p1zQZ5fVuxnq0cbKtkDmbAiNfqpqzn9QP7kVP5iopNF14wy0tDHR69YuM4iAXE3RzsnN2UjCIHBMNhdP7lkmtYj2h8fQUu5snU38LloD89G3JftoFr9B0qXggbB0bhvsqoVAhcUlQcxqpIpBUF8RPGQiqpNDomhs5QsLXoKB1palc67L6D9XJe2gNgRG5oDV4JfiguOrlSMs3zTmqjsCgi2YJgIcZMe05zKq1xm7m9TZBmJPmMJJ95ybfg8_KVu4bQ43-d90mSy45eiC04WuhK5qf8QxYS0b1M0IM6_PdbH2FzOB1fZBfnk2_v4TX-J2ng30ewXt3X9hi9m0p9cEr9G-3I92c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Earth+Fault+Detection+Using+Continuous+Wavelet+Transform+and+Convolutional+Neural+Network+in+Resonant+Grounding+Distribution+Systems&rft.jtitle=IEEE+sensors+journal&rft.au=Guo%2C+Mou-Fa&rft.au=Zeng%2C+Xiao-Dan&rft.au=Chen%2C+Duan-Yu&rft.au=Yang%2C+Nien-Che&rft.date=2018-02-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=18&rft.issue=3&rft.spage=1291&rft.epage=1300&rft_id=info:doi/10.1109%2FJSEN.2017.2776238&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2017_2776238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon