Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems

Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 18; no. 3; pp. 1291 - 1300
Main Authors Guo, Mou-Fa, Zeng, Xiao-Dan, Chen, Duan-Yu, Yang, Nien-Che
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Feature extraction for fault signals is critical and difficult in all kinds of fault detection schemes. A novel simple and effective method of faulty feeder detection in resonant grounding distribution systems based on the continuous wavelet transform (CWT) and convolutional neural network (CNN) is presented in this paper. The time-frequency gray scale images are acquired by applying the CWT to the collected transient zero-sequence current signals of the faulty feeder and sound feeders. The features of the gray scale image will be extracted adaptively by the CNN, which is trained by a large number of gray scale images under various kinds of fault conditions and factors. The features extraction and the faulty feeder detection can be implemented by the trained CNN simultaneously. As a comparison, two faulty feeder detection methods based on artificial feature extraction and traditional machine learning are introduced. A practical resonant grounding distribution system is simulated in power systems computer aided design/electromagnetic transients including DC, the effectiveness and performance of the proposed faulty feeder detection method is compared and verified under different fault circumstances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2017.2776238