Dissipativity Analysis of Switched Gene Regulatory Networks Actuated by Persistent Dwell-Time Switching Strategy
This article concentrates on the global uniform exponential stability analysis and dissipativity property for a class of discrete-time gene regulatory networks (GRNs). To describe the processes at work as cells change phenotype, the time-dependent persistent dwell-time switching strategy is applied...
Saved in:
Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 51; no. 9; pp. 5535 - 5546 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article concentrates on the global uniform exponential stability analysis and dissipativity property for a class of discrete-time gene regulatory networks (GRNs). To describe the processes at work as cells change phenotype, the time-dependent persistent dwell-time switching strategy is applied to switched GRNs. Formulating the mode-dependent Lyapunov-Krasovskii functional, the global uniform exponential stability and strictly dissipativity property criteria for the GRNs subject to time-varying delays are presented. Ultimately, an example, including three cases is employed to illustrate and discuss the availability of the given criteria. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2168-2216 2168-2232 |
DOI: | 10.1109/TSMC.2019.2956281 |