In-Band Full-Duplex Technology: Techniques and Systems Survey

In-band full-duplex (IBFD) technology can enable unique system capabilities and network architectures by allowing devices to transmit and receive on the same frequency at the same time. While previously considered impossible, this ability can now be used to optimize resource sharing within the crowd...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 67; no. 7; pp. 3025 - 3041
Main Authors Kolodziej, Kenneth E., Perry, Bradley T., Herd, Jeffrey S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In-band full-duplex (IBFD) technology can enable unique system capabilities and network architectures by allowing devices to transmit and receive on the same frequency at the same time. While previously considered impossible, this ability can now be used to optimize resource sharing within the crowded frequency spectrum for various communication systems, including 5G new radio. The potential of these IBFD systems can only be realized if each device incorporates a sufficient number of self-interference cancellation techniques to ensure that its receivers do not saturate. This tutorial survey offers the most comprehensive collection to date of these techniques and discusses how all of them can be implemented within the different domains of a typical transceiver. In addition, the results of a novel IBFD system study are presented for more than 50 demonstrated communication systems with more than 80 different measurement scenarios. The various system parameters are then combined into a new figure of merit, which can be used to propel future research and accelerate the inclusion of IBFD technology within an upcoming wireless standard.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2019.2896561