Observer-Based Synchronization of Complex Dynamical Networks Under Actuator Saturation and Probabilistic Faults

This paper investigates the observer-based synchronization problem for a family of complex dynamical networks subject to time delay, external disturbance, randomly occurring actuator faults, and input saturation. A realistic actuator fault model is considered in which the actuator faults are represe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 49; no. 7; pp. 1516 - 1526
Main Authors Selvaraj, Palanisamy, Sakthivel, Rathinasamy, Ahn, Choon Ki
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2018.2803261

Cover

Loading…
More Information
Summary:This paper investigates the observer-based synchronization problem for a family of complex dynamical networks subject to time delay, external disturbance, randomly occurring actuator faults, and input saturation. A realistic actuator fault model is considered in which the actuator faults are represented by stochastic variables that are assumed to obey a certain probabilistic distribution. An <inline-formula> <tex-math notation="LaTeX">H_{\infty} </tex-math></inline-formula> performance-related criterion is obtained via the Lyapunov-Krasovskii functional approach and stochastic analysis technique to asymptotically minimize the synchronization error and observer error simultaneously. Moreover, to meet the requirement of actuator saturation, the conditions for the domain of the attraction region are determined by employing the linear matrix inequality (LMI) approach and an optimization technique. Specifically, the proposed controller for the network synchronization is very simple and easy to implement in practical systems. Furthermore, the gain values of controller and observer gains are calculated by solving a set of LMIs. Eventually, the proposed theoretical results are verified through numerical simulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2018.2803261