A Nonintrusive Flow Rate Sensor Based on Microwave Split-Ring Resonators and Thermal Modulation

Microwave sensors offer noncontact solutions for flow rate measurements, central to various applications in pharmaceutics, chemical analysis, and biomedicine. The challenge, however, remains for microwave flow rate sensing of uniform liquids, where different flow rates do not lead to any permittivit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 70; no. 3; pp. 1954 - 1963
Main Authors Niksan, Omid, Jain, Mandeep Chhajer, Shah, Aaryaman, Zarifi, Mohammad Hossein
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microwave sensors offer noncontact solutions for flow rate measurements, central to various applications in pharmaceutics, chemical analysis, and biomedicine. The challenge, however, remains for microwave flow rate sensing of uniform liquids, where different flow rates do not lead to any permittivity or conductivity variations. In this work, we propose a noncontact, nonintrusive microwave sensor, capable of measuring the flow rate of uniform liquids. This sensor comprises a microwave split-ring resonator (SRR) integrated with a temperature modulation technique. The sensor operates based on the change in the dielectric properties of the liquid inside the channel, induced by local delivery of thermal energy. Different flow rates affect the exposure time of the liquid to thermal energy, which alters its permittivity and loss tangent, consequently changing the response of the SRR. The SRR with the integrated fluidic channel is designed to operate at 4.6 GHz with a resonant amplitude of −6.8 dB and a <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-factor (−3 dB) of 98. By monitoring the <inline-formula> <tex-math notation="LaTeX">S_{21} </tex-math></inline-formula> (dB) response, flow rates ranging from 1 to 40 mL/h are differentiated. The <inline-formula> <tex-math notation="LaTeX">S_{21} </tex-math></inline-formula> (dB) response's achieved sensitivity to different flow rates is <inline-formula> <tex-math notation="LaTeX">\vert 0.02\vert </tex-math></inline-formula> dB/mL/h. The proof of concept is successfully evaluated using water and isopropanol as two standard liquids. The results indicate the potential of the proposed nonintrusive flow rate sensing method in various applications, such as drug delivery and chemical sample preparation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2022.3142038