Contraction Mapping-Based Robust Convergence of Iterative Learning Control With Uncertain, Locally Lipschitz Nonlinearity

This paper studies the output tracking control problems for multiple-input, multiple-output (MIMO) locally Lipschitz nonlinear (LLNL) systems subject to iterative operation and uncertain, iteration-varying external disturbances and initial conditions. Under the assumption of a linear, P-type iterati...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 50; no. 2; pp. 442 - 454
Main Authors Meng, Deyuan, Moore, Kevin L.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2017.2780131

Cover

More Information
Summary:This paper studies the output tracking control problems for multiple-input, multiple-output (MIMO) locally Lipschitz nonlinear (LLNL) systems subject to iterative operation and uncertain, iteration-varying external disturbances and initial conditions. Under the assumption of a linear, P-type iterative learning control (ILC) update law, a double-dynamics analysis (DDA) approach is proposed to show the convergence of the ILC process in the presence of the locally Lipschitz nonlinearities and iteration-varying uncertainties. The DDA approach results in a contraction mapping-based convergence condition that guarantees both: 1) the boundedness of all system trajectories and 2) the robust convergence of the output tracking error. Further, a basic system relative degree condition is given that provides a necessary and sufficient (NAS) guarantee of the convergence of the ILC process. As a corollary, it is noted that in the absence of iteration-varying uncertainties, the results likewise provide an NAS convergence guarantee for MIMO LLNL systems. The simulations are presented to illustrate the ideas.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2017.2780131