Aerial Image Super Resolution via Wavelet Multiscale Convolutional Neural Networks

We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavele...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 15; no. 5; pp. 769 - 773
Main Authors Wang, Tingwei, Sun, Wenjian, Qi, Hairong, Ren, Peng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2018.2810893

Cover

Loading…
Abstract We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavelet multiscale representations, separately. The multiple CNNs thus trained characterize aerial images in multiple directions and multiscale frequency bands, and thus enable image restoration subject to sophisticated culture variability. For inference, the trained CNNs regress wavelet multiscale representations from a low-resolution aerial image, followed by wavelet synthesis that forms a restored high-resolution aerial image. Experimental results validate the effectiveness of our method for restoring complicated aerial images.
AbstractList We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavelet multiscale representations, separately. The multiple CNNs thus trained characterize aerial images in multiple directions and multiscale frequency bands, and thus enable image restoration subject to sophisticated culture variability. For inference, the trained CNNs regress wavelet multiscale representations from a low-resolution aerial image, followed by wavelet synthesis that forms a restored high-resolution aerial image. Experimental results validate the effectiveness of our method for restoring complicated aerial images.
Author Ren, Peng
Wang, Tingwei
Sun, Wenjian
Qi, Hairong
Author_xml – sequence: 1
  givenname: Tingwei
  orcidid: 0000-0001-8039-9530
  surname: Wang
  fullname: Wang, Tingwei
  email: wtw_upc@163.com
  organization: College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China
– sequence: 2
  givenname: Wenjian
  surname: Sun
  fullname: Sun, Wenjian
  email: swj_upc@163.com
  organization: College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China
– sequence: 3
  givenname: Hairong
  surname: Qi
  fullname: Qi, Hairong
  email: hqi@utk.edu
  organization: College of Engineering, The University of Tennessee, Knoxville, TN, USA
– sequence: 4
  givenname: Peng
  orcidid: 0000-0003-3949-985X
  surname: Ren
  fullname: Ren, Peng
  email: pengren@upc.edu.cn
  organization: College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China
BookMark eNp9kE9Lw0AQxRdRsK1-APES8Jy6f7LJ5liK1kJVaBW9LZvNRLam2bq7qfjtTWzx4MG5vIF5v-Hxhui4sQ0gdEHwmBCcXy9my9WYYiLGVBAscnaEBoRzEWOekeN-T3jMc_F6ioberzGmiRDZAC0n4Iyqo_lGvUG0arfgoiV4W7fB2CbaGRW9qB3UEKL7tg7Ga1VDNLXN7mDp2Ado3Y-ET-ve_Rk6qVTt4fygI_R8e_M0vYsXj7P5dLKINc1ZiEvNC40zoLSoRMHKFFcMtGCi0CKtCM1ywkmhMqU44AQnmidapwmnZanzlFE2Qlf7v1tnP1rwQa5t67pAXlKSJZzlrJsRyvYu7az3DiqpTVB98uCUqSXBsi9Q9gXKvkB5KLAjyR9y68xGua9_mcs9YwDg1y8YSfvrN56BfqY
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TIP_2024_3489228
crossref_primary_10_1007_s00138_023_01430_1
crossref_primary_10_1109_TGRS_2020_2966805
crossref_primary_10_1109_TGRS_2021_3132093
crossref_primary_10_3390_s19183929
crossref_primary_10_1007_s12596_023_01344_1
crossref_primary_10_1109_TGRS_2020_2966669
crossref_primary_10_1007_s11760_024_03371_2
crossref_primary_10_1007_s40747_021_00465_z
crossref_primary_10_1016_j_infrared_2023_104861
crossref_primary_10_1109_TGRS_2021_3069889
crossref_primary_10_1134_S1064226922040040
crossref_primary_10_32604_cmc_2023_043873
crossref_primary_10_1109_TGRS_2024_3370826
crossref_primary_10_1109_TNNLS_2020_3028688
crossref_primary_10_1016_j_catena_2025_108902
crossref_primary_10_1111_sum_12981
crossref_primary_10_2139_ssrn_4116225
crossref_primary_10_1007_s00138_024_01655_8
crossref_primary_10_1109_LGRS_2020_3022804
crossref_primary_10_2514_1_I011089
crossref_primary_10_1016_j_inffus_2022_10_007
crossref_primary_10_1109_TMM_2022_3179926
crossref_primary_10_1109_TGRS_2024_3457684
crossref_primary_10_1016_j_earscirev_2022_104110
crossref_primary_10_1016_j_jag_2020_102180
crossref_primary_10_1109_TGRS_2022_3222360
crossref_primary_10_1109_TIP_2021_3069317
crossref_primary_10_1109_TGRS_2019_2917427
crossref_primary_10_1109_TGRS_2024_3367165
crossref_primary_10_1109_MGRS_2022_3171836
crossref_primary_10_1109_TGRS_2022_3152984
crossref_primary_10_1007_s00371_020_01957_8
crossref_primary_10_1109_JSTARS_2023_3276409
crossref_primary_10_3390_rs16111895
crossref_primary_10_1109_ACCESS_2020_3017783
crossref_primary_10_1109_TGRS_2019_2959020
crossref_primary_10_15622_ia_23_4_5
crossref_primary_10_1080_01431161_2021_1934598
crossref_primary_10_1109_ACCESS_2020_2990870
Cites_doi 10.1109/TPAMI.2015.2439281
10.1109/LGRS.2017.2704122
10.1109/LGRS.2014.2308905
10.1109/83.941854
10.1016/j.sigpro.2016.05.002
10.1109/83.503915
10.1109/LGRS.2017.2736020
10.1016/j.patrec.2017.03.014
10.1109/CVPR.2016.182
10.1215/S0012-7094-92-06814-1
10.1109/ICCV.2017.187
10.1109/LGRS.2016.2579661
10.1109/CVPR.2004.1315043
10.1109/LGRS.2015.2475299
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2018.2810893
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 773
ExternalDocumentID 10_1109_LGRS_2018_2810893
8316893
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 18CX05014A
– fundername: National Natural Science Foundation of China
  grantid: 61671481
  funderid: 10.13039/501100001809
– fundername: Qingdao Applied Fundamental Research
  grantid: 16-5-1-11-jch
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-dc5bc07e22bf8b3d60f3ec838bc86f1279151ba7aa5e0404c54cc6452ddc96323
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 10:29:59 EDT 2025
Tue Jul 01 03:45:36 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Wed Aug 27 02:49:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-dc5bc07e22bf8b3d60f3ec838bc86f1279151ba7aa5e0404c54cc6452ddc96323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3949-985X
0000-0001-8039-9530
PQID 2174539333
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2174539333
ieee_primary_8316893
crossref_citationtrail_10_1109_LGRS_2018_2810893
crossref_primary_10_1109_LGRS_2018_2810893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
timofte (ref14) 2014
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref4
  doi: 10.1109/LGRS.2017.2704122
– ident: ref10
  doi: 10.1109/LGRS.2014.2308905
– ident: ref2
  doi: 10.1109/83.941854
– ident: ref7
  doi: 10.1016/j.sigpro.2016.05.002
– ident: ref1
  doi: 10.1109/83.503915
– ident: ref5
  doi: 10.1109/LGRS.2017.2736020
– ident: ref8
  doi: 10.1016/j.patrec.2017.03.014
– ident: ref15
  doi: 10.1109/CVPR.2016.182
– ident: ref11
  doi: 10.1215/S0012-7094-92-06814-1
– ident: ref9
  doi: 10.1109/ICCV.2017.187
– start-page: 111
  year: 2014
  ident: ref14
  article-title: A+: Adjusted anchored neighborhood regression for fast super-resolution
  publication-title: Proc Asian Conf Comput Vis
– ident: ref6
  doi: 10.1109/LGRS.2016.2579661
– ident: ref13
  doi: 10.1109/CVPR.2004.1315043
– ident: ref12
  doi: 10.1109/LGRS.2015.2475299
SSID ssj0024887
Score 2.3967428
Snippet We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 769
SubjectTerms Artificial neural networks
Convergence
Convolutional neural networks
Convolutional neural networks (CNNs)
Frequencies
Image resolution
Image restoration
Methods
Neural networks
Regression analysis
Representations
Resolution
Restoration
Spatial resolution
super resolution
Training
Wavelet analysis
Title Aerial Image Super Resolution via Wavelet Multiscale Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/8316893
https://www.proquest.com/docview/2174539333
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60IHrxLVar5OBJ3Lrd7CN7LEWrYj1Yi70teS2K2ordFuqvN5NNKz4QT7uHJISZSWYm8_gAjgTlIkml9hTLjYNibASPRwn18kYe05glkjEscO7cxBe98Kof9RfgZF4Lo7W2yWe6jr82lq-GcoxPZacMUZZSugiLRszKWq3PvnrMguGhReBFKeu7CGbDT0-v27ddTOJi9YA1fJbSLzrIgqr8uImtejlfg85sY2VWyVN9XIi6fP_Ws_G_O1-HVWdnkmYpGBuwoAebsOwgzx-mm7DUtpi-0y24bVopJJcv5m4h3fGrfiP4ql_KJJk8cnLPEZ-iILZcd2TYqklrOJi4IWYu9viwH5tUPtqG3vnZXevCc1ALnjT6vvCUjIT0Ex0EImeCqtjPqZaMMiFZnDeCJDWWgeAJ55E2xz6UUSglxkSVkuYIB3QHKoPhQO8CUUbryhzDo4qGKgm5LdPksdahZMagqII_I34mXR9yhMN4zqw_4qcZ8itDfmWOX1U4nk95LZtw_DV4C-k_H-hIX4XajMOZO6ajDP2xiKaU0r3fZ-3DCq5dZjjWoFK8jfWBsUIKcWjF7wOJb9j6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGCMGFN2IwIAdOiI6u6SM9ogk2YOPAQ-xW5VWBgA2xDgl-PXGaDfEQ4tQeYiWK7diJHx_AnqBcJKnUnmK5uaAYH8HjUUK9vJHHNGaJZAwLnLsXcfsmPOtFvQocTGphtNY2-UzX8dfG8tVAjvCp7JAhylJKp2DG2P0wKqu1PjvrMQuHhz6BF6Ws52KYDT897LQurzCNi9UD1vBZSr9YIQur8uMstgbmZBG646WVeSUP9VEh6vL9W9fG_659CRacp0mOStFYhorur8CcAz2_e1uB2ZZF9X1bhcsjK4fk9MmcLuRq9KxfCL7rl1JJXu85ueWIUFEQW7A7NIzVpDnov7ohhha7fNiPTSsfrsHNyfF1s-05sAVPGotfeEpGQvqJDgKRM0FV7OdUS0aZkCzOG0GSGt9A8ITzSBvFD2UUSolRUaWkUeKArsN0f9DXG0CUsbsyxwCpoqFKQm4LNXmsdSiZcSmq4I83P5OuEzkCYjxm9kbipxnyK0N-ZY5fVdifkDyXbTj-GryK-z8Z6La-CrUxhzOnqMMMb2QRTSmlm79T7cJc-7rbyTqnF-dbMI_zlPmONZguXkZ62_gkhdixovgBDrfcRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerial+Image+Super+Resolution+via+Wavelet+Multiscale+Convolutional+Neural+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Tingwei&rft.au=Sun%2C+Wenjian&rft.au=Qi%2C+Hairong&rft.au=Ren%2C+Peng&rft.date=2018-05-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=15&rft.issue=5&rft.spage=769&rft.epage=773&rft_id=info:doi/10.1109%2FLGRS.2018.2810893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2018_2810893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon