Aerial Image Super Resolution via Wavelet Multiscale Convolutional Neural Networks
We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavele...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 15; no. 5; pp. 769 - 773 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-598X 1558-0571 |
DOI | 10.1109/LGRS.2018.2810893 |
Cover
Loading…
Abstract | We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavelet multiscale representations, separately. The multiple CNNs thus trained characterize aerial images in multiple directions and multiscale frequency bands, and thus enable image restoration subject to sophisticated culture variability. For inference, the trained CNNs regress wavelet multiscale representations from a low-resolution aerial image, followed by wavelet synthesis that forms a restored high-resolution aerial image. Experimental results validate the effectiveness of our method for restoring complicated aerial images. |
---|---|
AbstractList | We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavelet multiscale representations, separately. The multiple CNNs thus trained characterize aerial images in multiple directions and multiscale frequency bands, and thus enable image restoration subject to sophisticated culture variability. For inference, the trained CNNs regress wavelet multiscale representations from a low-resolution aerial image, followed by wavelet synthesis that forms a restored high-resolution aerial image. Experimental results validate the effectiveness of our method for restoring complicated aerial images. |
Author | Ren, Peng Wang, Tingwei Sun, Wenjian Qi, Hairong |
Author_xml | – sequence: 1 givenname: Tingwei orcidid: 0000-0001-8039-9530 surname: Wang fullname: Wang, Tingwei email: wtw_upc@163.com organization: College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China – sequence: 2 givenname: Wenjian surname: Sun fullname: Sun, Wenjian email: swj_upc@163.com organization: College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China – sequence: 3 givenname: Hairong surname: Qi fullname: Qi, Hairong email: hqi@utk.edu organization: College of Engineering, The University of Tennessee, Knoxville, TN, USA – sequence: 4 givenname: Peng orcidid: 0000-0003-3949-985X surname: Ren fullname: Ren, Peng email: pengren@upc.edu.cn organization: College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China |
BookMark | eNp9kE9Lw0AQxRdRsK1-APES8Jy6f7LJ5liK1kJVaBW9LZvNRLam2bq7qfjtTWzx4MG5vIF5v-Hxhui4sQ0gdEHwmBCcXy9my9WYYiLGVBAscnaEBoRzEWOekeN-T3jMc_F6ioberzGmiRDZAC0n4Iyqo_lGvUG0arfgoiV4W7fB2CbaGRW9qB3UEKL7tg7Ga1VDNLXN7mDp2Ado3Y-ET-ve_Rk6qVTt4fygI_R8e_M0vYsXj7P5dLKINc1ZiEvNC40zoLSoRMHKFFcMtGCi0CKtCM1ywkmhMqU44AQnmidapwmnZanzlFE2Qlf7v1tnP1rwQa5t67pAXlKSJZzlrJsRyvYu7az3DiqpTVB98uCUqSXBsi9Q9gXKvkB5KLAjyR9y68xGua9_mcs9YwDg1y8YSfvrN56BfqY |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_TIP_2024_3489228 crossref_primary_10_1007_s00138_023_01430_1 crossref_primary_10_1109_TGRS_2020_2966805 crossref_primary_10_1109_TGRS_2021_3132093 crossref_primary_10_3390_s19183929 crossref_primary_10_1007_s12596_023_01344_1 crossref_primary_10_1109_TGRS_2020_2966669 crossref_primary_10_1007_s11760_024_03371_2 crossref_primary_10_1007_s40747_021_00465_z crossref_primary_10_1016_j_infrared_2023_104861 crossref_primary_10_1109_TGRS_2021_3069889 crossref_primary_10_1134_S1064226922040040 crossref_primary_10_32604_cmc_2023_043873 crossref_primary_10_1109_TGRS_2024_3370826 crossref_primary_10_1109_TNNLS_2020_3028688 crossref_primary_10_1016_j_catena_2025_108902 crossref_primary_10_1111_sum_12981 crossref_primary_10_2139_ssrn_4116225 crossref_primary_10_1007_s00138_024_01655_8 crossref_primary_10_1109_LGRS_2020_3022804 crossref_primary_10_2514_1_I011089 crossref_primary_10_1016_j_inffus_2022_10_007 crossref_primary_10_1109_TMM_2022_3179926 crossref_primary_10_1109_TGRS_2024_3457684 crossref_primary_10_1016_j_earscirev_2022_104110 crossref_primary_10_1016_j_jag_2020_102180 crossref_primary_10_1109_TGRS_2022_3222360 crossref_primary_10_1109_TIP_2021_3069317 crossref_primary_10_1109_TGRS_2019_2917427 crossref_primary_10_1109_TGRS_2024_3367165 crossref_primary_10_1109_MGRS_2022_3171836 crossref_primary_10_1109_TGRS_2022_3152984 crossref_primary_10_1007_s00371_020_01957_8 crossref_primary_10_1109_JSTARS_2023_3276409 crossref_primary_10_3390_rs16111895 crossref_primary_10_1109_ACCESS_2020_3017783 crossref_primary_10_1109_TGRS_2019_2959020 crossref_primary_10_15622_ia_23_4_5 crossref_primary_10_1080_01431161_2021_1934598 crossref_primary_10_1109_ACCESS_2020_2990870 |
Cites_doi | 10.1109/TPAMI.2015.2439281 10.1109/LGRS.2017.2704122 10.1109/LGRS.2014.2308905 10.1109/83.941854 10.1016/j.sigpro.2016.05.002 10.1109/83.503915 10.1109/LGRS.2017.2736020 10.1016/j.patrec.2017.03.014 10.1109/CVPR.2016.182 10.1215/S0012-7094-92-06814-1 10.1109/ICCV.2017.187 10.1109/LGRS.2016.2579661 10.1109/CVPR.2004.1315043 10.1109/LGRS.2015.2475299 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2018.2810893 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 773 |
ExternalDocumentID | 10_1109_LGRS_2018_2810893 8316893 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 18CX05014A – fundername: National Natural Science Foundation of China grantid: 61671481 funderid: 10.13039/501100001809 – fundername: Qingdao Applied Fundamental Research grantid: 16-5-1-11-jch |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-dc5bc07e22bf8b3d60f3ec838bc86f1279151ba7aa5e0404c54cc6452ddc96323 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 10:29:59 EDT 2025 Tue Jul 01 03:45:36 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Wed Aug 27 02:49:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-dc5bc07e22bf8b3d60f3ec838bc86f1279151ba7aa5e0404c54cc6452ddc96323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3949-985X 0000-0001-8039-9530 |
PQID | 2174539333 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2174539333 ieee_primary_8316893 crossref_citationtrail_10_1109_LGRS_2018_2810893 crossref_primary_10_1109_LGRS_2018_2810893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref2 timofte (ref14) 2014 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1109/TPAMI.2015.2439281 – ident: ref4 doi: 10.1109/LGRS.2017.2704122 – ident: ref10 doi: 10.1109/LGRS.2014.2308905 – ident: ref2 doi: 10.1109/83.941854 – ident: ref7 doi: 10.1016/j.sigpro.2016.05.002 – ident: ref1 doi: 10.1109/83.503915 – ident: ref5 doi: 10.1109/LGRS.2017.2736020 – ident: ref8 doi: 10.1016/j.patrec.2017.03.014 – ident: ref15 doi: 10.1109/CVPR.2016.182 – ident: ref11 doi: 10.1215/S0012-7094-92-06814-1 – ident: ref9 doi: 10.1109/ICCV.2017.187 – start-page: 111 year: 2014 ident: ref14 article-title: A+: Adjusted anchored neighborhood regression for fast super-resolution publication-title: Proc Asian Conf Comput Vis – ident: ref6 doi: 10.1109/LGRS.2016.2579661 – ident: ref13 doi: 10.1109/CVPR.2004.1315043 – ident: ref12 doi: 10.1109/LGRS.2015.2475299 |
SSID | ssj0024887 |
Score | 2.3967428 |
Snippet | We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 769 |
SubjectTerms | Artificial neural networks Convergence Convolutional neural networks Convolutional neural networks (CNNs) Frequencies Image resolution Image restoration Methods Neural networks Regression analysis Representations Resolution Restoration Spatial resolution super resolution Training Wavelet analysis |
Title | Aerial Image Super Resolution via Wavelet Multiscale Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/8316893 https://www.proquest.com/docview/2174539333 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60IHrxLVar5OBJ3Lrd7CN7LEWrYj1Yi70teS2K2ordFuqvN5NNKz4QT7uHJISZSWYm8_gAjgTlIkml9hTLjYNibASPRwn18kYe05glkjEscO7cxBe98Kof9RfgZF4Lo7W2yWe6jr82lq-GcoxPZacMUZZSugiLRszKWq3PvnrMguGhReBFKeu7CGbDT0-v27ddTOJi9YA1fJbSLzrIgqr8uImtejlfg85sY2VWyVN9XIi6fP_Ws_G_O1-HVWdnkmYpGBuwoAebsOwgzx-mm7DUtpi-0y24bVopJJcv5m4h3fGrfiP4ql_KJJk8cnLPEZ-iILZcd2TYqklrOJi4IWYu9viwH5tUPtqG3vnZXevCc1ALnjT6vvCUjIT0Ex0EImeCqtjPqZaMMiFZnDeCJDWWgeAJ55E2xz6UUSglxkSVkuYIB3QHKoPhQO8CUUbryhzDo4qGKgm5LdPksdahZMagqII_I34mXR9yhMN4zqw_4qcZ8itDfmWOX1U4nk95LZtw_DV4C-k_H-hIX4XajMOZO6ajDP2xiKaU0r3fZ-3DCq5dZjjWoFK8jfWBsUIKcWjF7wOJb9j6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGCMGFN2IwIAdOiI6u6SM9ogk2YOPAQ-xW5VWBgA2xDgl-PXGaDfEQ4tQeYiWK7diJHx_AnqBcJKnUnmK5uaAYH8HjUUK9vJHHNGaJZAwLnLsXcfsmPOtFvQocTGphtNY2-UzX8dfG8tVAjvCp7JAhylJKp2DG2P0wKqu1PjvrMQuHhz6BF6Ws52KYDT897LQurzCNi9UD1vBZSr9YIQur8uMstgbmZBG646WVeSUP9VEh6vL9W9fG_659CRacp0mOStFYhorur8CcAz2_e1uB2ZZF9X1bhcsjK4fk9MmcLuRq9KxfCL7rl1JJXu85ueWIUFEQW7A7NIzVpDnov7ohhha7fNiPTSsfrsHNyfF1s-05sAVPGotfeEpGQvqJDgKRM0FV7OdUS0aZkCzOG0GSGt9A8ITzSBvFD2UUSolRUaWkUeKArsN0f9DXG0CUsbsyxwCpoqFKQm4LNXmsdSiZcSmq4I83P5OuEzkCYjxm9kbipxnyK0N-ZY5fVdifkDyXbTj-GryK-z8Z6La-CrUxhzOnqMMMb2QRTSmlm79T7cJc-7rbyTqnF-dbMI_zlPmONZguXkZ62_gkhdixovgBDrfcRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerial+Image+Super+Resolution+via+Wavelet+Multiscale+Convolutional+Neural+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Tingwei&rft.au=Sun%2C+Wenjian&rft.au=Qi%2C+Hairong&rft.au=Ren%2C+Peng&rft.date=2018-05-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=15&rft.issue=5&rft.spage=769&rft.epage=773&rft_id=info:doi/10.1109%2FLGRS.2018.2810893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2018_2810893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |