Aerial Image Super Resolution via Wavelet Multiscale Convolutional Neural Networks

We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavele...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 15; no. 5; pp. 769 - 773
Main Authors Wang, Tingwei, Sun, Wenjian, Qi, Hairong, Ren, Peng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2018.2810893

Cover

Loading…
More Information
Summary:We develop an aerial image super-resolution method by training convolutional neural networks (CNNs) with respect to wavelet analysis. To this end, we commence by performing wavelet decomposition to aerial images for multiscale representations. We then train multiple CNNs for approximating the wavelet multiscale representations, separately. The multiple CNNs thus trained characterize aerial images in multiple directions and multiscale frequency bands, and thus enable image restoration subject to sophisticated culture variability. For inference, the trained CNNs regress wavelet multiscale representations from a low-resolution aerial image, followed by wavelet synthesis that forms a restored high-resolution aerial image. Experimental results validate the effectiveness of our method for restoring complicated aerial images.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2018.2810893