Automatic Lane-Changing Trajectory Planning: From Self-Optimum to Local-Optimum

Existing lane-changing (LC) algorithms in general prioritize self-interest above the benefits of others. We argue that an autonomous vehicle should be socially responsible during lane change without causing excessive impact on its surroundings. Thus, in this paper, we propose an LC algorithm that co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 11; pp. 21004 - 21014
Main Authors Li, Yang, Li, Linbo, Ni, Daiheng, Wang, Wenxuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Existing lane-changing (LC) algorithms in general prioritize self-interest above the benefits of others. We argue that an autonomous vehicle should be socially responsible during lane change without causing excessive impact on its surroundings. Thus, in this paper, we propose an LC algorithm that could generate a trajectory to optimize the overall benefits of the subject vehicle and others in its vicinity. This is mainly achieved by introducing Longitudinal Control Model to characterize the driving behaviors of neighboring vehicles, and drivers' needs such as comfort, efficiency, and safety are simultaneously satisfied. We combine macro and micro comparative analysis to evaluate the advantage of our approach against existing algorithms. Our findings reveal that the vehicle controlled by our algorithm is capable of safely performing the LC maneuver while causing the least amount of impact. This is reflected in the decrease in total cost of all vehicles and the increase in traffic speed and throughput in its vicinity. In addition, we use HighD dataset for further validation and demonstrate that our algorithm is practically sound. Application of this research can lead to improved autonomous driving technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2022.3179117