Petri Net Modeling and Scheduling of a Close-Down Process for Time-Constrained Single-Arm Cluster Tools
In wafer fabrication, a robotic cluster tool is required to be closed down in order for engineers to perform its on-demand and preventive maintenance and switch between different wafer lots. They often deal with a close-down process subject to wafer residency time constraints, i.e., a wafer must exi...
Saved in:
Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 48; no. 3; pp. 389 - 400 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In wafer fabrication, a robotic cluster tool is required to be closed down in order for engineers to perform its on-demand and preventive maintenance and switch between different wafer lots. They often deal with a close-down process subject to wafer residency time constraints, i.e., a wafer must exit from a processing chamber before its quality degradation within a certain time limit. To obtain higher yield, it is very important to optimize a close-down process for a cluster tool. Yet the existing literature pays no or little attention to this issue. By focusing on a time-constrained single-arm cluster tool, this paper intends: 1) to build its Petri net model to analyze its schedulability and 2) to develop computationally efficient algorithms to find an optimal and feasible schedule for its closing-down process under different workloads at its steps. Industrial examples are used to illustrate the application of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2168-2216 2168-2232 |
DOI: | 10.1109/TSMC.2016.2598303 |