Highly-Accurate Community Detection via Pointwise Mutual Information-Incorporated Symmetric Non-Negative Matrix Factorization
Community detection, aiming at determining correct affiliation of each node in a network, is a critical task of complex network analysis. Owing to its high efficiency, Symmetric and Non-negative Matrix Factorization (SNMF) is frequently adopted to handle this task. However, existing SNMF models most...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 8; no. 1; pp. 463 - 476 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Community detection, aiming at determining correct affiliation of each node in a network, is a critical task of complex network analysis. Owing to its high efficiency, Symmetric and Non-negative Matrix Factorization (SNMF) is frequently adopted to handle this task. However, existing SNMF models mostly focus on a network's first-order topological information described by its adjacency matrix without considering the implicit associations among involved nodes. To address this issue, this study proposes a Pointwise mutual information-incorporated and Graph-regularized SNMF (PGS) model. It uses a) Pointwise Mutual Information to quantify implicit associations among nodes, thereby completing the missing but crucial information among critical nodes in a uniform way; b) graph-regularization to achieve precise representation of local topology, and c) SNMF to implement efficient community detection. Empirical studies on eight real-world social networks generated by industrial applications demonstrate that a PGS model achieves significantly higher accuracy gain in community detection than state-of-the-art community detectors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2327-4697 2334-329X |
DOI: | 10.1109/TNSE.2020.3040407 |