An Autofocus Cartesian Factorized Backprojection Algorithm for Spotlight Synthetic Aperture Radar Imaging

A backprojection (BP) algorithm is recognized as an ideal method for high-resolution synthetic aperture radar (SAR) imaging. Several fast BP algorithms have been developed to enhance the efficiency of the BP integral. The Cartesian factorized BP (CFBP) algorithm is proposed recently to avoid massive...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 15; no. 8; pp. 1244 - 1248
Main Authors Luo, Yin, Zhao, Fengjun, Li, Ning, Zhang, Heng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A backprojection (BP) algorithm is recognized as an ideal method for high-resolution synthetic aperture radar (SAR) imaging. Several fast BP algorithms have been developed to enhance the efficiency of the BP integral. The Cartesian factorized BP (CFBP) algorithm is proposed recently to avoid massive interpolations and improve the performance. However, integrating autofocus techniques with the CFBP has not been discussed. In this letter, an autofocus CFBP algorithm is proposed to compatibly combine the autofocus processing within the CFBP. After modifying the spectrum compression step in the CFBP, the approximate Fourier transformation (FT) relationship between the modified compensated subaperture images and the corresponding range-compressed phase history data in the Cartesian coordinate is revealed. The phase error is obtained by the multiple aperture map drift method, and the singular value decomposition total least square method is combined to improve the estimate robustness. Employing the range blocking method, the range variance of the phase error is compensated. The proposed algorithm inherits the advantages of the CFBP. Experiments performed by the X-band airborne SAR system with a maximum bandwidth of 1.2 GHz validate the proposed approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2018.2829483